

AGRICULTURE

BULLETIN

A Monthly Publication on Agriculture Trends

Volume-1 Issue-9

September 2025

AGRICULTURE

BULLETIN

A Monthly Publication on Agriculture Trends

ISSN: 3049-2289

Editorial Board

Editor-in-Chief

Dr. Sharvan Kumar

Assistant Professor, Invertis University, Bareilly, Uttar Pradesh

Associate Editor

Dr. Yumnam Somi Singh

Assistant Professor, North-Eastern Hill University, Tura Campus, Meghalaya

Dr. Ankit Singh Bhadauria

Assistant Professor, Chhatrapati Shahu Ji Maharaj University, Kanpur

Dr. Dinesha S

Assistant Professor Department of Forestry NEHU Tura Campus, Tura, Meghalaya

Dr. Shipra Singh Parmar

Assistant Professor, ITM University, Gwalior, Madhya Pradesh

Dr. Dilip Kumar Chaurasiya

Assistant Professor, GLA University, Mathura, Uttar Pradesh,

Dr. K. Dujeshwer

Assistant Professor, NEHU, Tura Campus, Tura, Meghalaya

Dr. Anuj Shakya

Assistant Professor, Department of Agriculture, Invertis University, Bareilly, Uttar Pradesh

Index

Sr. No.	Article Title	Page No.
1	Zero-Waste Livestock Farming Models	1
3	Climate Smart Villages: Building Hope for a Sustainable Future	4
4	Creation and Promotion of Blogging Website on Agri-Entrepreneurship	5
5	India's Clean Energy Transition Towards a Green Economy	10
6	Milk Fever in Dairy Cows	13
7	Compressed Bio Gas (Bio-CNG): The Fuel of the Future	15
8	Sustainable Pathways for India's Bioethanol Revolution: The Strategic Role of Agricultural Feedstocks	18
9	Soil Management: A Critical Approach Towards Sustainable Agriculture	23
10	Vertical Farming and Urban Agriculture: Innovations in Food Production	26
11	Next-Generation Molecular Methods for Plant Disease Diagnosis	29
12	Cultivating Change: Big Data Role in Transforming Agriculture	33
13	Role of Women Farmers and Women Self-Help Groups (SHGs) in Agricultural Innovations and Competitions	37
14	Agri-Entrepreneurship: Opportunities for Women in Rural Markets	42
15	Empowering Women Farmers Through Skill Development Programs	47
16	Women Empowerment in Agriculture: Self-Help Groups and Microfinance	52
17	Encouraging Women's Participation in Agricultural Research and Innovation	57
18	Self-Help Groups (SHGs) as a Platform for Women's Economic Growth	61
19	Nematode Diseases of Vegetables: A Silent Threat to Vegetable Production	66
20	Nematode Pest of Rice and Their Management	68
21	Nematode Pest of Rice and Their Management	73
22	Beyond the Backyard: How Assam's Poultry Sector Can Transform the Rural Economy	77
23	Women's Leadership in Community-Based Water and Resource Management	79
24	Nano-Bioinoculants: Tiny Tools for Global Food Security	83
25	Agri Fashion: Fields to Fabric	88
26	Vertical Farming: A Sustainable Solution for Future Agriculture	90
27	Dairy Farming as an Enterprise in India	91

28	Carbon Capture and Climate Smart Agriculture	93
29	The Rise of Regenerative and Conservation Agriculture	95
30	The Role of Precision Farming in Increasing Productivity	97
31	Monk Fruit: The Sweet Revolution in Sustainable Farming	99
32	Effect of Synthetic Residues in Soil	101
33	Vertical Farming and Hydroponics as Future Solutions	103
34	Regenerative Agriculture: The Future of Sustainable Farming	105
35	Soil Health Management for Sustainable Crop Production	107
36	Water Management Strategies in Agriculture: Drip and Sprinkler Irrigation	109
37	Farmers' Income Support Schemes & Expansion of Kisan Credit Card Limits	111
38	Mushroom Cultivation: A Sustainable Generation Model	116
39	Significance of Information and Communication Technology (ICT) in Contemporary Agriculture	117
40	Kisan Call Centres (KCC) & e-Choupal: Farmer Helplines and Digital Kiosks	121
41	Crop Rotation and Diversification for Sustainable Agriculture	124
42	Role of ICT in Agricultural Extension and Farmer Empowerment	127
43	Building Resilient Soils for Sustainable Harvests: Low Carbon Footprint Practices for Problem Soil Management	129
44	Precision Agriculture for the Future of Modern Farming	132
45	Agri Waste to Wealth	136
46	Market Mapping: Using Statistics to Identify Untapped Agri-Business Niches	138
47	Urban Agriculture: Growing Food in Limited Spaces	140
48	An Intricate Defence Mechanisms of Silkworm, <i>Bombyx mori</i> L.: Overview of Its Immune System	144
49	Collaborative Platforms: Integrating e-Crop Data with Agricultural Research	147
50	Good Agricultural Practices (GAP): An Approach to Sustainable Farming	153
51	Affordable Precision Agriculture Solutions (e-Crops) for Small Farmers	156
52	Climate-Smart Farming Practices for Smallholders	160

Zero-Waste Livestock Farming Models

Sustainable Animal Husbandry: Turning Waste into Wealth

Prajwalita Pathak¹ and Gunjan Gogoi²

¹Suject Matter Specialist (Animal Sc.) and ²Sr. Scientist & Head

Krishi Vigyan Kendra, Dhemaji

Assam Agricultural University, Simen Chapor

Zero-waste livestock farming is gaining recognition as a sustainable approach to balance productivity with environmental care. By combining scientific management techniques with traditional knowledge, farmers can recycle and reuse every by-product of livestock raising viz. dung, urine, fodder leftovers, and even wastewater into valuable resources such as organic manure, biogas, bio-slurry, vermicompost, and bio-pesticides. These methods not only cut down on environmental pollution but also boost soil health, reduce input costs, and support climate-resilient farming systems. Zero-waste models foster a circular economy on farms, where nothing is seen as 'waste' but as a resource for another use, creating a self-sustaining and profitable farming cycle. For smallholders in regions like Assam and the Northeast, these models hold great promise for improving livelihoods, conserving resources, and advancing sustainable rural development.

Introduction

In an era where sustainability is no longer a choice but a necessity, livestock farming is undergoing a green revolution. Traditional animal husbandry, often criticized for its environmental footprint, is being transformed through zero-waste models systems that ensure every output, even waste, finds a productive use. This approach not only reduces pollution and conserves resources but also adds economic value for farmers.

What is Zero-Waste Livestock Farming?

Zero-waste livestock farming refers to the efficient recycling and reuse of all outputs generated on an animal farm from dung and urine to leftover fodder, wastewater, and carcass by-products. The goal is simple that is "**Nothing should go to waste.**" Every element is seen as a resource that can be reused, repurposed, or converted into something valuable.

In such a model, animal excreta become fertilizer, urine becomes a pest repellent, biogas fuels the kitchen, and even dead animals become organic compost or fish feed, all under strict safety protocols. It's a circular economy at the grassroots.

Components of a Zero-Waste Livestock Model

1. Dung to Compost/Biofertilizer

Animal dung is a natural treasure. When properly composted or used in **vermicomposting**, it enriches soil with organic matter and beneficial microbes. Many farms now convert cow or buffalo dung into **ready-to-sell organic fertilizers**, creating an additional income stream.

- *Bonus:* Compost sales during the planting season fetch premium prices from organic farmers.

2. Biogas from Dung

A simple **biogas digester** can convert cow dung into **methane gas**, which is used for cooking, heating water, or generating electricity on farms. The slurry that comes out of the digester is an **excellent organic fertilizer**, often referred to as "golden slurry."

- *Case Study:* A dairy farm in Maharashtra generates biogas from 10 cows to meet all its energy needs and sells surplus slurry in local markets.

3. Urine as Natural Pesticide and Liquid Fertilizer

Animal urine, particularly cow urine, is rich in nitrogen and other micronutrients. It can be:

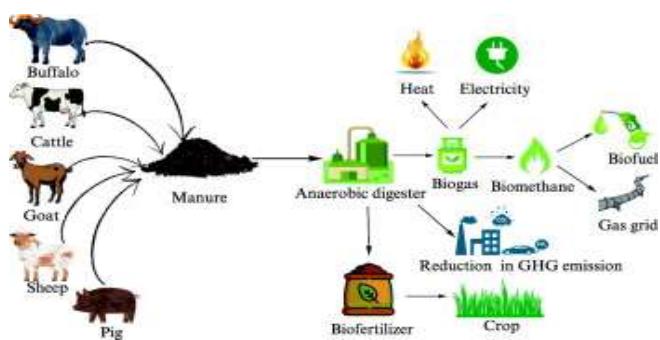
- Mixed with neem and used as a **bio-pesticide**
- Fermented and diluted to be applied as a **liquid foliar spray**

This reduces dependency on chemical fertilizers and pesticides, lowering input costs.

4. Fodder Residue and Waste Recycling

Leftover feed and spoiled fodder are often discarded. However, innovative farmers mix these with jaggery and yeast to create **silage or fermented feed**, improving digestibility and nutrition value for animals.

- *Sustainable Tip:* Use of azolla (a water fern) and hydroponic fodder can also reduce fodder wastage.


5. Wastewater Recycling

Wastewater from animal sheds, when filtered and settled, can be used to irrigate fields or grow green fodder, ensuring **efficient water use** in drought-prone areas.

6. Dead Animal Management

Though a sensitive issue, scientific and sanitary disposal of carcasses can convert death into sustainability. Carcasses can be:

- Rendered (under regulated units) to produce **bone meal or fat for industrial use**
- Composted using specialized pits and used in **non-edible horticulture**

Fig 1: Renewable biogas energy potential from livestock manure (Nehra and Jain, 2023)

Why Farmers Should Adopt Zero-Waste Models

Benefit	Impact
Reduced input costs	Less spending on chemical fertilizers, pesticides, fuel
Additional income	Compost, biogas slurry, vermicompost, bio-pesticide sales
Environmental conservation	Lower pollution, better soil health, water recycling
Better animal health	Cleaner sheds and eco-friendly practices
Government support	Schemes like NLM, RKVY promote sustainable livestock

Successful Models in India

Baramati Dairy Model (Maharashtra)

Baramati farmers use dung to generate biogas and power milk chilling units. Compost is sold to grape farmers, and wastewater irrigates fodder plots, making the dairy 100% waste-free.

TDU's Goshala (Bengaluru)

The Trans Disciplinary University runs a zero-waste cow shelter where urine is used in Ayurvedic formulations, dung powers biogas, and excess milk is used to make organic ghee.

Zero-Waste Animal Husbandry in Small Farms

Even **small and marginal farmers** can adopt simple zero-waste techniques:

- **Compost pit** behind the cattle shed
- **Cow urine collection drum** with neem leaves
- **Small biogas plant** for 2–5 animals

- **Fodder troughs** to minimize spillage
- **Azolla tanks** to reduce fodder cost

Government schemes such as the **National Livestock Mission (NLM)** and **Kisan Credit Card for Animal Farmers** offer funding and technical support.

Way Forward: From Farm to Policy

Zero-waste animal husbandry is not just a farm-level innovation, it's a **national need**. India, being the largest livestock holder in the world, generates over 1.3 million tonnes of dung daily. If even 30% of this is harnessed for energy and fertilizer, we can:

- Reduce dependence on fossil fuels
- Cut urea imports
- Improve rural sanitation

- Create jobs in rural composting and biogas sectors

Policy push, training, and farmer awareness are key to scaling this model nationwide.

Conclusion

Zero-waste livestock farming is a powerful path to sustainable development. It not only strengthens the rural economy but also nurtures the environment. By turning animal waste into wealth, we move closer to a greener, cleaner, and more profitable future for Indian agriculture. The future of farming is not just in production, but in recycling, reusing, and regenerating.

Climate Smart Villages: Building Hope for a Sustainable Future

Ankush

Lovely Professional University, Punjab, India

Rural communities are on the front lines of climate change's effects as the globe struggles with its urgent reality. Farmers across India and beyond are facing unpredictable weather, shrinking water resources, and frequent crop losses. Amid these challenges, a promising idea is taking root: the Climate Smart Village (CSV). More than just a development model, it is a vision for a resilient and sustainable rural future.

What is a Climate Smart Village?

Imagine a village where farmers use solar-powered pumps instead of diesel engines, where rainwater is harvested and stored in ponds, and where every farmer receives weather updates on their phone before sowing their crops. This is the essence of a Climate Smart Village — a rural community that embraces innovation, sustainability, and collective action to adapt to climate change.

The concept was pioneered by global research organizations such as the CGIAR, and today, several states in India are experimenting with it. From Haryana to Bihar, farmers are learning how small changes can make a big difference.

The Smart Way of Farming

At the heart of a Climate Smart Village lies climate-smart agriculture. Farmers adopt drought- and flood-resistant varieties, diversify their crops, and practice water-efficient irrigation like drip and sprinkler systems. Laser land leveling, conservation tillage, and organic nutrient management are promoted to conserve soil and water.

Equally important is the use of clean energy. Solar lights, biogas units, and solar irrigation pumps reduce dependence on fossil fuels, cutting both costs and carbon emissions.

Technology Meets Tradition

One of the most inspiring aspects of Climate Smart Villages is the blend of traditional wisdom with modern science. Farmers receive real-time weather forecasts and climate advisories through mobile apps,

while also relying on time-tested practices like intercropping and mulching. This synergy ensures not just survival but growth in uncertain conditions.

Beyond Farming

A Climate Smart Village is not only about crops. It is about people. Communities are encouraged to diversify their livelihoods through poultry, fisheries, mushroom cultivation, or small-scale processing units. Women and youth play a central role, ensuring that benefits reach every household.

A Model for the Future

The results speak for themselves. In parts of Haryana, farmers who adopted climate-smart practices reported higher yields, reduced input costs, and improved soil health. In Madhya Pradesh, water harvesting structures have revived groundwater levels, bringing hope to drought-prone areas.

But perhaps the most powerful change is the shift in mindset — from dependency to resilience, from fear of climate shocks to confidence in managing them.

Conclusion

The Climate Smart Village is not a dream of the future; it is happening today. It shows us that even the smallest community can lead the fight against climate change with the right tools, knowledge, and collective spirit. As the idea spreads, these villages may well become the backbone of a sustainable and food-secure world.

Creation and Promotion of Blogging Website on Agri-Entrepreneurship

Durga Balamadhavan¹, Elakkiya N², Dona Mariya Joseph³

Bsc (Hons) Agriculture IV Year, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore

The following article focuses on the creation and promotion of a blog with domain name “Agrilaunchpad” aimed at promoting awareness and available opportunities in agri-business and entrepreneurship. As a crew of three pursuing Bsc (Hons) Agriculture Final Year in Tamil Nadu Agricultural University, we were assigned with the project of creation and promotion of a blog on agri-entrepreneurship. Among all websites, blogger.com was chosen for its user-friendliness. The blog features informative and research-backed blog posts covering a wide range of profitable agri-based entrepreneurial ventures. Emphasis was placed on content relevance, SEO optimisation, user interface design and outreach strategies to maximize visibility and engagement. Meta Ads was initiated to boost the blog outreach. Overall, the project demonstrates the feasibility and social impact of digital outreach on agri-entrepreneurship.

Introduction

In this digital era, there exists an immense scope for sharing information on agri-entrepreneurship, especially among youth, farmers, students and aspiring entrepreneurs. A well-designed and optimized blog can serve as a scalable tool to invoke entrepreneurial spirit among youths to start a venture of their own. Our project perfectly serves the need of bridging the gap between traditional agricultural practices and modern entrepreneurial opportunities by leveraging digital platforms.

The following are the objectives of our project:

- To create an informative and engaging blog site
- To document and promote agri-entrepreneurship models
- To apply SEO and content strategies for wider reach
- To leverage social media platforms to gain organic and inorganic traffic via paid ads to blog posts
- To analyze website performance and impact created

Process Involved in Creation and Promotion of Agrilaunchpad:

The methodology for our project outlines the systematic approach used to design, develop and optimize a blogging website focused on agri-entrepreneurship. It involves several phases such as

setting up of blogger account, designing and customizing the blog, content creation, basic SEO implementation, promotion through social media platforms and feedback receipt to ensure the platform is informative, user-friendly and effective in reaching the target audience.

PHASE 1: SETTING UP OUR BLOGGER ACCOUNT

Various websites such as wordpress, wix and blogger were analyzed for its pros and cons. Atlast, blogger.com website was chosen as it offers free web hosting and sub domain, User-friendly dashboard, SEO friendly, Layout customization and Integration with Google services. Our chosen niche is agri-entrepreneurship. We fixed the domain name of “Agrilaunchpad” and simultaneously hosted it in a secured server of <https://agrilaunchpad..blogspot.com>. Pre-designed layout of Notable (Light) was chosen from blogger’s free template.

PHASE 2: DESIGNING AND CUSTOMIZING THE BLOG

- i. Once our blogger account was set up, we updated the following “About Us” section. “Agrilaunchpad is a blog platform sharing

startup ideas exclusively on agri-entrepreneurship and publish success stories of agripreneurs in and around Tamil Nadu. We are a crew of three pursuing Undergraduate studies in Tamil Nadu Agricultural University, Coimbatore. Our motto is to provide valuable insights on emerging technology in agriculture, in order to motivate the young minds of our country to take up entrepreneurship"

- ii. Agrilaunchpad logo was created using Canva and updated on our website.
- iii. Custom robots.txt was enabled which tells search engine crawlers such as Googlebot, Bingbot which pages to crawl and which not to crawl.

Agrilaunchpad logo

PHASE 3: CREATING AND PUBLISHING BLOG POSTS

- i. Next phase comes the creation and publishing of blog posts. To prevent running out of contents, we brainstormed "Profitable agribusiness ideas" to be posted for the next 2 months. Some of the profitable agribusiness ventures that came as a result of brainstorming are Stevia Farming Business - A Natural Sweetener, Hydroponics and Vertical Farming, Dehydrated Fruit Snacks Business, Contract Poultry Farming and Spice Export Business.
- ii. Blogs were written by researching authenticated articles. Credible sources such as research articles, success stories from magazines were used for preparing contents. Key facts, figures and

examples were jotted down before kickstarting to write our content. Structured outline for our blog post was created, which includes: Catchy and Keyword-rich Title, Brief Introduction with Hook, Sub-headings like Market Demand for a particular business, Step-by-step Guide, Cost Economics, Marketing Channels, Government Schemes and Subsidies, Challenges and Feasible Solutions, Conclusion with a Quote. First draft was prepared and was refined into a final copy of writing.

- iii. Once the final copy of writing is ready, tools such as Google Docs Spelling and Grammar Suggestions and Grammarly were used for Proofreading, in order to ensure our writing is free from grammatical, spelling and punctuation errors. Plagiarism was also checked with the aid of the Duplichecker tool.
- iv. A new post in our blog was created and formatting tools were used to enhance the website's appearance. Table of Contents was typed in. Formatting tools such as bullet points and short paragraphs for easy reading, bold for emphasis, italics for scientific names was used. High quality relevant images were downloaded from Pinterest and inserted inbetween our writing. Relevant videos were inserted via PC for each blog. Hyperlinks which are clickable elements that take readers from one webpage to another were added. In addition to this, jump links (also known as anchor links) which take the user to a specific section of the same webpage was inserted in HTML view, to ensure mobile-friendly navigation in long blog posts.
- v. Labels which help in organizing blog posts and Search engine ranking were included in every blog post.
- vi. Basic Search Engine Optimisation (SEO) was done for all the blog posts. Primary keywords of our respective blog topic were included in title, first paragraph, subheadings, image alt text and meta description. Finally, blog posts were previewed and published.

List of Blog Posts Published on "Agrilaunchpad":

- i. How to Start Microgreens Farming Successfully with Minimal Space in 2025?
- ii. Success Story - A to Z of Setting Up a Successful Cattle Feed Manufacturing Unit
- iii. Inhale the Earth, Exhale the Stress: Agro-Tourism in Incredible India
- iv. Step-by-Step Guide To Start Your Indoor Aeroponics Saffron Farming Business in India (2025)
- v. From Bean To Bar: The Journey of Cocoa To Chocolate
- vi. Freshwater Pearl Farming in India: A Lucrative Aquaculture Venture
- vii. Dry Flower Technology Business: Startup Guide and Profit Ideas
- viii. Exotic Farming Business: Dragon Fruit Cultivation in India

PHASE 4: PROMOTION OF BLOG ON DIGITAL PLATFORMS

- i. Social media platforms like Whatsapp Networking Groups, Instagram and Pinterest were effectively used in promoting our blog posts.
- ii. Quora, which is a popular question-and-answer (Q&A) platform, was being used to create backlinks, by providing relevant answers to questions raised regarding Microgreens Farming and Indoor Aeroponics Saffron Farming.
- iii. A Facebook page named 'Agrilaunchpad' was created and updated with logo on profile picture, cover photo, short bio. Meta Ads for the posts of "Dry Flower Technology and Dragon Fruit Farming Business" were initiated in order to boost traffic to respective blog posts.

Meta Ad on Dry Flower Technology

Meta Ad on Dragon Fruit Farming

PHASE 5: CONSISTENCY IS THE KEY

Blog posts were published once a week to ensure consistency. Overall, for 2 months, '8 blog posts' were published.

PERFORMANCE METRICS

Performance metrics of Agrilaunchpad website is described in the below table:

METRICS	VALUE ACHIEVED	TOOLS USED
Total Page Views	1,160+ views	Blogger Stats
No. of Indexed Pages	1 indexed page	Google Search Console
Total Profile Views	33 Views	Blogger Stats
Top Post Views (Dragon Fruit Cultivation)	305 Views	Blogger Stats

EXOTIC FARMING BUSINESS: DRAGON FRUIT CULTIVATION IN INDIA Published - 26 Jul Dragon Fruit Cultivation In India	AgriLaunchpad 0 106
DRY FLOWER TECHNOLOGY BUSINESS- STARTUP GUIDE AND PROFIT IDEAS Published - 21 Jul Dry Flower manufacturing business	AgriLaunchpad 0 232
FRESHWATER PEARL FARMING IN INDIA: A LUCRATIVE AQUACULTURE VENTURE Published - 16 Jul Freshwater pearl farming	AgriLaunchpad 0 103
FROM BEAN TO BAR: THE JOURNEY OF COCOA TO CHOCOLATE Published - 7 Jul Chocolate Manufacturing Business	AgriLaunchpad 0 105
STEP-BY-STEP GUIDE TO START YOUR INDOOR AEROPONICS SAFFRON FARMING BUSINESS Published - 27 Jun Indoor Aeroponics Saffron Farming In India	AgriLaunchpad 0 103
INHALE THE EARTH, EXHALE THE STRESS: AGROTURISM IN INCREDIBLE INDIA Published - 18 Jun Agro-tourism business	AgriLaunchpad 0 100

Performance

₹87.01 spent over 1 day.

Link clicks **270** Cost per Link Click **₹0.32**

Views **5,575** Reach **5,497**

Activity

Post engagements

Link clicks

Post reactions

Post shares

Home Page Views of AgriLaunchpad Blog

Performance Metrics of Meta Ads Published is described in the below table:

PERFORMANCE METRICS	DRY FLOWER TECHNOLOGY AD	DRAGON FRUIT FARMING AD
Reach	11,266	5,497
Views	12,339	5,575
Link Clicks	128	270
Cost Per Link Click	Rs. 0.57	Rs. 0.32
Post Engagement	139	289
Post Reactions	11	18
Post Shares	1	1
Daily Spent	Rs. 73.53 spent/day	Rs. 87.01 spent/day

Performance Metrics for "Dragon Fruit Farming Ad"

Through paid marketing of running Meta Ads, we were able to get more traffic for both the blog posts. Dragon Fruit Farming Ad received more link clicks (270 clicks). Infact, the cost per click was low (Rs. 0.32/-) for the Dragon Fruit Farming Ad. Overall, compared to organic marketing, paid marketing through Meta Ads fetched quicker results in a short span of time.

CONCLUSION

The project was undertaken with the objective of creating and promoting a niche blog titled "AgriLaunchpad", focused on the theme of "agri entrepreneurship". The blog focuses on serving as an informative and accessible digital platform for individuals interested in starting or expanding businesses in the agricultural sector. Key topics covered included indoor aeroponics saffron farming, microgreens cultivation, agro-tourism, cattle feed manufacturing, freshwater pearl farming, agro-tourism, chocolate manufacturing and dragon fruit cultivation. These areas were selected based on their growing relevance, potential profitability and emerging interest among young agri-entrepreneurs in India.

The blog was developed using Google's Blogger platform due to its user-friendly interface. The creation phase involved customizing the blog layout, designing a relevant logo, setting up necessary pages

(About and Contact) and adding gadgets for better navigation and reader experience. Basic SEO practices were implemented such as keyword usage, internal linking, meta tags, mobile optimization and use of image alt texts. These steps were aimed at improving the blog's visibility in search engine results and enhancing the overall user experience.

In addition to technical optimization, promotion was carried out through social media platforms like Facebook and WhatsApp to reach a wider audience. Meta Ads campaign was also created and initiated, which increased blog visibility and traffic for specific posts. As a result, the blog showed consistent growth in terms of page views and engagement with blog content.

In a nutshell, the project successfully demonstrated that a niche blog can be a powerful tool

for knowledge dissemination, entrepreneurship promotion and online presence in the agricultural domain. Agrilaunchpad not only provided valuable information to aspiring agri-entrepreneurs but also showcased how digital content, when strategically planned and optimized, can reach targeted audiences effectively. With ongoing content updates, community engagement and promotional efforts, the blog holds the potential to become a trusted resource hub for agribusiness development in India and beyond.

India's Clean Energy Transition towards a Green Economy

T. Nivethitha¹, K. Shamini¹, R. Pushpam^{1*} and R. Ravikesavan²

¹Department of Forage Crops, CPBG, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

²Directorate of Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu

Introduction

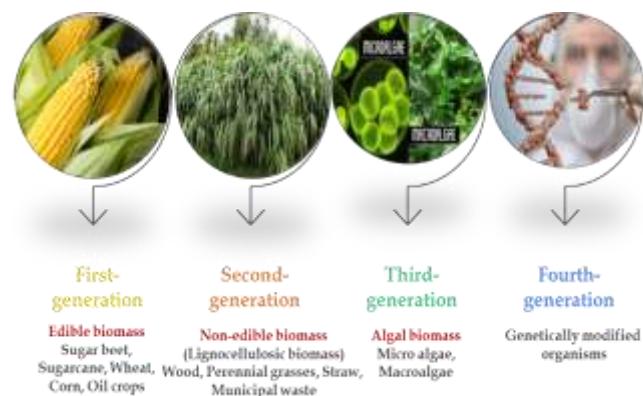
Bioenergy is a form of renewable energy derived from biomass, including plant materials, wood and animal waste. Globally, bioenergy represents the largest share of renewable energy, contributing approximately 55 per cent of the total renewable energy supply (excluding traditional biomass use) and accounts for more than 6 per cent of the overall global energy consumption. It is available in various forms as solid biomass (e.g., wood, crop residues), liquid biofuels (e.g., bioethanol, biodiesel) and gaseous fuel (e.g., biogas/biomethane). Bioenergy plays a vital role in electricity generation, thermal energy production and as transportation fuel. In particular, it plays a crucial role in the heat and transport sectors, where other viable renewable energy alternatives are limited. Although usage of fossil fuels accounts for over 90% of transport energy in most of the countries, the increasing adoption of biofuels, energy efficiency measures and vehicle electrification are beginning to curb fossil fuel reliance. Biodiesel is more common in countries with high diesel vehicle use, while bioethanol is widely used in regions with more gasoline-powered vehicles, such as Brazil, the United States and Canada.

Modern Bioenergy – Carbon neutral energy source as clean energy

Biomass are rich in organic matter that store carbon assimilated by plants through the process of photosynthesis. It can be converted to biofuels through various thermochemical and biochemical processes. During bioenergy production and

consumption, the carbon contained in biomass is released back into the atmosphere through combustion. As more biomass is produced, an equivalent amount of carbon is absorbed thereby creating a closed carbon cycle. This renders modern bioenergy a low-emission or near carbon-neutral energy source.

Bioenergy Production Technologies


Based on the type of raw materials utilized, bioenergy production technologies are categorized into four generations: first, second, third and fourth generation system.

First-generation biofuels are derived from food crops such as corn, wheat, barley, sugar beet, sugarcane, paddy and potato. These crops are the sources of fermentable sugars, starch and oil that can be converted into bioethanol or biodiesel. Bioethanol is primarily produced through the fermentation of sugars present in crops like sugarcane and corn. Corn-based ethanol production is predominant in the United States in which starch is hydrolysed into fermentable sugars prior to fermentation. In contrast, Biodiesel is produced through transesterification of vegetable oils or animal fats using feedstocks such as soybean, palm and canola.

Second-generation biofuels are derived from lignocellulosic biomass, including agricultural residues, forest residues, biomass from energy crops (perennial grasses) and municipal solid waste. The lignocellulosic biomass is mainly composed of cellulose, hemicellulose and lignin. Lignocellulosic biomass is the most abundant and inexpensive organic resource on Earth. However, its complex

structure poses challenges for bioconversion. Unlike starch- or sugar-based feedstocks, lignocellulosic materials require pretreatment and enzymatic hydrolysis, which are cost-intensive processes.

Third-generation biofuels are primarily derived from aquatic biomass resources, notably microalgae, cyanobacteria and other marine and freshwater plant species such as water hyacinth, seaweed, diatoms, duckweed and *Salvinia*. Algae are broadly classified based on size and morphology into macroalgae and microalgae, with microalgae (5–100 μm) being the most preferred due to their rapid growth rate, high photosynthetic efficiency, high lipid content and ability to thrive under diverse environmental conditions with minimal nutrient input. Microalgae possess the capacity to biologically fix atmospheric CO_2 and synthesize lipid-rich compounds suitable for biofuel production. Additionally, algae can be cultivated using industrial effluents or wastewater as growth media, which significantly reduces the dependency on arable land and freshwater resources. However, the oil extracted from algal sources is highly unsaturated, rendering it more volatile and thermally unstable. Despite this, the short life cycle and high biomass productivity of algae enable more frequent harvesting compared to terrestrial energy crops.

Fourth-generation biofuels are produced from genetically modified organisms. The advanced genetic engineering tools like CRISPR/Cas9 enables targeted genome editing to enhance the metabolic pathways of microorganisms to increase biofuel

production. Microorganisms such as Bacteria, yeast and algae are engineered to improve the sugar utilization, photosynthetic efficiency and lipid synthesis. For example, the introduction of butanol biosynthetic genes into *Escherichia coli*, along with the integration of membrane transporters to enable efficient biofuel secretion, reduces cellular toxicity and simplifies downstream processing, thereby improving overall biofuel production efficiency.

Food versus Fuel

India's pursuit for 20% ethanol blending target by 2025–26, requires approximately 1,016 crore litres of ethanol production annually. At present, ethanol production is highly dependent on first-generation feedstocks such as sugarcane molasses and food grains like maize and rice. However, this strategy poses significant challenges in a resource-constrained country like India, intensifying the food, feed versus fuel debate. For an instance, the diversion of maize for ethanol rising from 1 million tonnes in 2022 - 23 to 7 million tonnes in 2023 - 24 in India has severely disrupted the poultry sector, causing feed shortages and ripple effects on livestock nutrition and edible oil prices. By 2025, ethanol production from food crops is expected to require around 165 lakh metric tonnes of grains and 60 lakh metric tonnes of sugar. This diversion of food resources toward fuel raises concerns over food security, price inflation and land use competition. In this context, second-generation biofuels, derived from non-edible lignocellulosic biomass such as agricultural residues and forest waste, offer a sustainable alternative that avoids direct competition with food supply. India, as the second-largest producer of agricultural waste globally, generates about 500 million tonnes annually much of which is discarded or burned. Utilizing this underexploited biomass for ethanol production not only mitigates the food vs fuel conflict but also addresses stubble burning and air pollution. The crops that are solely grown for the production of energy is referred as energy crops. Energy crops such as alfalfa (*Medicago sativa* L.), reed canarygrass

(*Phalaris arundinacea* L.), napiergrass (*Pennisetum purpureum*), bermudagrass (*Cynodon* spp.) and switchgrass are extensively studied for their high biomass yield and adaptability. These perennial forage crops require fewer inputs, offer year-round availability and sequester more carbon than annual grain crops. At present, second generation bioenergy crops are considered to be the future of the bioenergy industry and are the focus of intense research. In contrast, third and fourth generation biofuels, though promising, face major hurdles. Microalgae-based third generation biofuels production are limited by high cost and energy-intensive harvesting and downstream processing. Meanwhile, fourth generation biofuels relying on genetically modified organisms encounter regulatory, biosafety concerns and issues related to public acceptance.

Conclusion

To meet the ethanol demand for 20% ethanol-blending target (MoPNG, 2022), India must

prioritize second-generation biofuel production thereby, reducing dependence on food-based feedstocks. The Pradhan Mantri JI-VAN Yojana supports this transition by offering viability gap funding for second-generation biofuel production projects. In parallel, oil PSUs are setting up second generation biorefineries across the country to promote the use of non-food feedstocks. The National Policy on Biofuels (2018, revised 2022) further strengthens this initiative. Hence, expanding second generation biofuel production infrastructure is vital for ensuring energy security, reducing fossil fuel imports and building a sustainable green economy.

Milk Feaver in Dairy Cows

Ankit Kumar Tiwari and Ankur Dwivedi

Research scholar Animal husbandry dairying science (LPM) Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalay Chitrakoot Satna Madhya Pradesh

What is milk fever?

Milk Fever (MF) is one of the most common mineral-related metabolic conditions affecting dairy cows at parturition, a disorder that occurs immediately after or close to calving as a result of a low level of calcium in the blood (hypocalcaemia). A mild degree of hypocalcaemia develops in the majority of cows during the peripartum period and has been linked to calving problems, retained placenta, uterine prolapse, metritis, mastitis, ruminal stasis, depression of the immune system and generally reduced reproductive performance, resulting in reduction of productive life by 3.4 years and/or death if left untreated. In a small proportion of animals, hypocalcaemia becomes severe and results in paresis, recumbency and, occasionally, death. About 50% of dairy cows in their second lactation and greater have blood Ca concentrations that fall below the threshold for subclinical hypocalcaemia after calving. It is a common metabolic disorder in dairy cattle that generally affects older, high producing cows. Milk fever is an acute to peracute, afebrile, flaccid paralysis of mature dairy cows that usually occurs within 48–72 hours of calving, although sometimes it may occur in late lactation.

Symptoms

1. In the beginning, it is normal for cows to start walking somewhat stiffly.
2. Some cows end up throwing their legs to the side in an attempt to retain their balance.
3. Eventually most cows who are suffering from milk fever will end up becoming downer cows
4. They often sit quietly and are unable to rise.
5. Their coat feels cold and the temperature will be lower than normal.

6. The cow's rectum will commonly be full of faeces, and generally the anus will bulge.
7. Some cows end up developing a fine muscle tremor, and so they can be seen to shiver, particularly over their neck and chest.
8. If left untreated, the muscle paralysis will end up getting worse.
9. Eventually the cow will roll over onto its side and not be able to sit back up again.
10. Due to being in this position, the cow will become bloated.

Cause and Effect

How to prevent milk fever?

A cow's demand for calcium increases significantly as she gets closer to calving. A large amount of calcium is required for the increased bone growth in the unborn calf and the production of colostrum. To meet this demand, the cow first takes calcium from its blood. Because this doesn't suffice, the cow has to mobilise more calcium from its diet and its bones. Most of the time, cows can't get enough available calcium, leading to (sub)clinical milk fever. In general, older cows are more susceptible to (sub)clinical milk fever than younger ones.

What are the consequences of milk fever?

While clinical milk fever can be fatal, subclinical cases can also have a serious impact as a result of lost milk production and the costs and time involved in bringing the cow back to full health. While obvious symptoms are absent, subclinical cases of milk fever can be the gateway to an increase in mastitis, retained placenta, endometritis, uterine infections and other diseases as a result of the immune system being weakened immune system. This will have an obvious detrimental effect on milk output and can incur significant time, energy and financial costs to return the cow to full health.

Prevention

Management of the diet can be a valuable aid preventing milk fever. Cows should be kept on a low calcium diet while they are lactating (dry). This stimulates their calcium regulatory system to keep the blood levels normal by mobilising the body stores of calcium from the bone. When the demand for calcium increases as calving, calcium can be mobilised much more rapidly from bone than the feed, therefore preventing milk fever. With cows at greater risk - Cows of mature age and in forward to fat condition - green feed should be restricted and plenty of hay fed for at least 1-2 weeks before calving. Neither should contain a high percentage of clover or capeweed.

Treatments

The treatment should be carried out as quickly as possible. Administration of calcium borogluconate by oral route is the best approach to hypocalcemia cows that are still standing, but the intravenous (IV) calcium administration is not recommended for the treatment of cows that are still standing, since this application if not done correctly can result in dead animal by cardiac complication. For cows in stage II and III of milk fever should be treated immediately with a slow IV administration of 500 ml of a solution of calcium borogluconate 23 %. This gives 10.8 g of elemental calcium, which is more than sufficient to correct the deficit whole cow's calcium (about 4 to 6 grams) In general early intravenous calcium borogluconate is the treatment of choice for severely affected patients. The solution must be given slowly because rapid calcium infusion may result in cardiac arrest. Concurrent use of subcutaneous calcium borogluconate may prevent recurrence, by slow release of biologically available calcium from the tissues into the bloodstream. The prognosis is excellent if cows are treated early and properly. As the symptoms worsen so does the prognosis.

Compressed Bio Gas (Bio-CNG): The Fuel of the Future

Dr. Jambamma^{1*} and Dr. D. Kalpana

¹ Assistant Professor and ²Associate Professor

Agriculture Collage, Aswaraopet-507301, Badhradi Kothagudem(Dist.)

Agriculture Collage, R'Nagar, Hyderabad-03

Professor Jayashankar Telangana Agricultural University, Telangana

Introduction

India, one of the fastest-growing economies with a GDP growth rate of 7.4%, is witnessing a rapid increase in energy consumption. According to the Ministry of Petroleum and Natural Gas (MoP&NG), India currently imports approximately 50% of its natural gas requirements. To address this dependency and promote sustainable energy, Compressed Bio Gas (CBG), or Bio-CNG, produced via anaerobic digestion of organic waste, offers a renewable solution with benefits such as reduced greenhouse gas emissions, lower fossil fuel dependency, and rural employment generation.

To promote CBG, the Government of India launched the National Policy on Bio-Fuels 2018 and the Sustainable Alternative Towards Affordable Transportation (SATAT) scheme. With an estimated CBG production potential of 62 million metric tons (MMT) and biomanure generation capacity of 370 MMT, CBG is poised to transform India's energy landscape by utilizing diverse biomass sources, including agricultural residue, municipal solid waste, sugarcane press mud, distillery spent wash, cattle dung, and sewage treatment plant waste.

Global Initiatives

Developed countries have been promoting biogas through supportive legal frameworks, educational programs, and accessible technology. In Europe, biogas is primarily fed into local natural gas grids or used for power generation. Germany, a leader in biogas production, has doubled its number of biogas plants, reaching a total production capacity of 8.98 billion cubic meters (BCM), equivalent to 6.6 MMT. These plants, often operated by farmer cooperatives,

use crops like maize and turnips as feedstock. The success of such initiatives provides a model for India to emulate in scaling up CBG production.

CBG Production Process

CBG is produced through the anaerobic digestion of organic waste, resulting in biogas containing 55–60% methane, 40–45% carbon dioxide, and trace amounts of hydrogen sulfide. The biogas undergoes purification to remove carbon dioxide and hydrogen sulfide, achieving a methane purity of up to 99.9% using methods like chemical scrubbing with monoethylamine (MEA) systems, which are widely used in Germany for their efficiency and minimal methane loss (<0.1%). CBG, with properties similar to CNG, serves as a green fuel for automotive, industrial, and commercial use. Purified biogas is compressed to 250 bar and supplied via cascades or pipelines.

Equipment and Raw Materials

The CBG production process relies on specialized machinery and diverse raw materials:

- Machines & Equipment:** Shredder/Pulverizer, Mixing Tanks, Slurry Preparation Units, Gas Holder, Anaerobic Digester, Biogas Purification Unit, Filling Station/Dispenser, and Other Equipment & Miscellaneous Assets.
- Raw Materials:** Agricultural Waste, Animal Waste, Food & Kitchen Waste, and Municipal Solid Waste.
- Licenses:** GST Registration, Udyam Registration, Land & Factory Setup, Approvals (Petroleum & Explosives Safety,

Environmental Clearances), and NOC from Fire & Pollution Control Board.

CBG in India: Potential and Progress

India's CBG production potential is estimated at 62 MMT, aligning with market demand and making it economically viable. Renewable fuel credits further offset production costs. Several states have initiated CBG production, with Gujarat leading at 12 plants, followed by Punjab and Maharashtra. Notably, the Kaira District Cooperative Milk Producers Union Limited (Amul Dairy) has successfully implemented CBG projects, showcasing the feasibility of large-scale adoption.

The Indian government has introduced multiple initiatives to promote CBG:

- **SATAT Scheme:** Launched on October 1, 2018, SATAT aims to establish an ecosystem for CBG production from various waste sources. Oil and Gas Marketing Companies (IOCL, BPCL, HPCL, GAIL, and IGL) have invited Expressions of Interest (EoI) to procure CBG from entrepreneurs for marketing.
- **GOBARdhan Initiative:** The Galvanizing Organic Bio-Agro Resources Dhan (GOBARdhan) scheme promotes a circular economy by establishing 500 new "waste-to-wealth" plants, including 200 CBG plants (75 in urban areas) and 300 community or cluster-based plants, with a total investment of INR 10,000 crore. A 5% CBG mandate has been introduced for organizations marketing natural gas and biogas, and excise duty exemptions on CBG further incentivize production.
- **Union Budget 2023-24:** An allocation of INR 35,000 crore for energy transition includes funding for CBG plant installations, targeting 5,000 plants by 2030 to produce 15 MMT of CBG annually, equivalent to 40% of

India's current CNG consumption (44 MMT).

Adoption has been sluggish in spite of these initiatives; as of December 2024, there were just 115 CBG plants operating, well short of the 5,000-plant goal.

Uses of Biogas Slurry

The biogas production process yields a nutrient-rich byproduct known as biogas slurry, which has multiple applications:

- Enhances soil micronutrients, improving fertility.
- Improves soil structure, drainage, and root aeration.
- Serves as a supplementary feed in fish culture.
- Supports the production of biofertilizers like Azolla and aquatic biomass Spirulina.

Environmental and Economic Benefits

CBG offers significant advantages:

- **Environmental:** Reduces greenhouse gas emissions by utilizing organic waste, mitigating pollution from improper waste disposal, as seen in projects like the GOBARdhan Bio-CNG Plant in Indore, which addressed health hazards from organic waste mismanagement.
- **Economic:** Decreases reliance on imported CNG (46% of India's CNG is imported), creates local jobs, and supports a circular economy through biomanure production, recognized as "Fermented Organic Manure" under the Fertilizer Control Order 1985.

Challenges and Future Outlook

While CBG holds immense potential, challenges like slow adoption and infrastructure development must be addressed. Scaling up to 5,000 plants by 2030 requires accelerated investment, streamlined regulations, and increased awareness. The government's proactive policies, such as the 5% CBG mandate and excise duty exemptions, are steps

in the right direction. By leveraging India's vast biomass resources and learning from global models like Germany's, CBG can become a cornerstone of India's sustainable energy future.

Conclusion

Compressed Bio Gas (Bio-CNG) is a transformative renewable fuel that aligns with India's goals of energy security, environmental sustainability, and economic growth. With robust government support, a vast biomass potential, and successful pilot projects, Bio-CNG is well-positioned to reduce India's reliance on fossil fuel imports and drive a circular economy. By addressing adoption challenges and scaling infrastructure, India can establish Bio-CNG as the fuel of the future, paving the way for a cleaner and more sustainable energy ecosystem.



Figure 1. Waste to Wealth: Conversion of Agro, Animal, Vegetable, and Sewage Wastes into Bio-CNG and Organic Manure within a Circular Economy.

Sustainable Pathways for India's Bioethanol Revolution: The Strategic Role of Agricultural Feedstocks

Himakara Datta Mandalapu¹, Sampath Lavudya², CVCM Reddy¹, Chavan Shyam Raj Naik¹

¹Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Lam, Guntur,

² ICAR- Indian Institute of Oilseed Research, Rajendranagar, Hyderabad

The Global Bioethanol Landscape

The world is currently at a pivotal juncture where accelerating climate change, rising energy demand, and sustainability imperatives converge. Global greenhouse gas emissions remain at record levels, with anthropogenic warming advancing at an unprecedented rate of 0.27°C per decade during 2015–2024. Scientific assessments indicate that the remaining window to limit warming to 1.5°C may close within three years, as the Earth's energy imbalance has more than doubled since 1975 and the global carbon budget is being depleted at an accelerated pace. Concurrently, global energy demand continues to expand. According to the *International Energy Agency's Global Energy Review 2025*, total energy consumption rose by 2.2% in 2024, while electricity demand grew by 4.3%, a trend driven by extreme climatic conditions, electrification processes, digitalisation, and the proliferation of data centers. Over 80% of this increase originated in emerging economies, with China and India accounting for the largest absolute growth. Achieving the Paris Agreement objective of limiting warming to 1.5°C will require a reduction in global CO₂ emissions by approximately 50% by 2030 and the attainment of net-zero emissions by mid-century.

Bioethanol has emerged as a significant renewable fuel with the potential to mitigate greenhouse gas emissions while simultaneously contributing to energy security and rural economic development. Derived from biomass, bioethanol functions within a renewable carbon cycle, as plants sequester CO₂ during growth and release it upon combustion, thereby maintaining near-carbon

neutrality. Advanced production pathways are capable of achieving lifecycle emissions as low as – 8.5 gCO₂e/MJ, compared to conventional gasoline emissions of 88–94 gCO₂e/MJ. National policies have accelerated ethanol integration through blending mandates ranging from 5% (E5) to over 30% (E30). Brazil exemplifies large-scale adoption with an E27 mandate since 2015, supported by advanced sugarcane-based ethanol systems and flex-fuel vehicle technology. This transition has displaced 44% of gasoline in the national transport sector and avoided approximately 600 million tonnes of CO₂ equivalent emissions. In parallel, the United States enforces the Renewable Fuel Standard, while the European Union implements the Renewable Energy Directive with sustainability criteria. At the global level, the establishment of the Global Biofuels Alliance (GBA) at the 2023 G20 Summit in New Delhi marked a landmark initiative in international cooperation. Spearheaded by India, in collaboration with the United States and Brazil, who collectively represent 85% of global biofuel production, the GBA has expanded to 24 member states and 12 international organisations, including the IEA, World Bank, and ADB. This coalition underscores the growing international consensus on biofuels as an essential instrument in advancing climate mitigation and energy transition strategies.

Understanding Bioethanol: From Feedstocks to Fuel

Bioethanol has developed through four generations of technology, each characterized by its choice of feedstocks, production approach, and sustainability outcomes. This evolution reflects the search for cleaner energy systems that balance fuel production

with food security, environmental protection, and climate goals.

First Generation Bioethanol: Edible Feedstocks

The first generation of bioethanol is produced from food crops such as sugarcane, corn, wheat, and sugar beet. These pathways are technologically mature and commercially established, supported by reliable supply chains and industrial-scale production. However, they remain controversial due to the “food versus fuel” debate, as farmland and edible crops are diverted away from food markets. This raises concerns about rising food prices and food security, especially in vulnerable regions.

Second Generation Bioethanol: Agricultural Residues and Waste

The second generation uses non-food biomass such as crop residues, forestry by-products, and dedicated energy crops grown on marginal lands. This approach reduces competition with food supplies and offers environmental benefits by turning agricultural waste into a resource and discouraging residue burning. The challenge lies in the complexity of processing lignocellulosic material, which makes production more technologically demanding and economically costly compared to the first generation.

Third Generation Bioethanol: Algae Based Systems

The third generation focuses on algae as a feedstock, which offers very high potential yields per unit area and does not compete with arable land or freshwater resources. Algae can be grown in saline or wastewater and adapted to diverse environments, making it highly promising from a sustainability perspective. This concept addresses both the food security concerns of the first generation and the feedstock limitations of the second, although it remains in the early stages of technological and commercial development.

Fourth Generation Bioethanol: Carbon Capturing Pathways

The fourth generation moves beyond renewable feedstocks to include active carbon management strategies. It integrates advanced biotechnology, such as engineered crops or microorganisms, with carbon capture and storage systems. In principle, this allows the production of bioethanol while simultaneously removing carbon dioxide from the atmosphere, making it possible to achieve carbon negative outcomes. While still largely theoretical, this pathway represents the most ambitious direction for biofuel research, combining renewable energy with long-term climate mitigation.

The Carbon Footprint Advantage: Environmental Benefits

The environmental benefits of bioethanol are both substantial and multidimensional. Lifecycle assessments consistently demonstrate lower emissions compared to conventional fossil fuels. Ethanol produced from molasses typically achieves emission levels around 65 gCO₂e/MJ, while advanced production systems integrated with carbon capture and utilization have demonstrated the potential for net-negative emissions, reaching as low as -8.5 gCO₂e/MJ. This compares favorably with gasoline, which emits between 88 and 94 gCO₂e/MJ, offering reductions of 20–30 percent in greenhouse gas output.

Beyond carbon mitigation, bioethanol contributes to improved air quality by lowering emissions of particulate matter and reducing the release of toxic compounds such as benzene, toluene, and xylene from vehicle exhaust. Its renewable carbon cycle also ensures that the CO₂ released during combustion is offset by absorption during plant growth, creating a closed-loop system that contrasts with the linear release of carbon from fossil fuels. Additional co-benefits include reduced dependence on fossil fuel extraction, enhanced energy security, and the potential for carbon sequestration in biomass

cultivation. However, concerns remain regarding water demand for irrigation, indirect land use change, and fertilizer application, all of which require careful management to ensure genuine environmental gains.

Bioethanol and the Sustainable Development Goals

Bioethanol production demonstrates strong alignment with the United Nations Sustainable Development Goals (SDGs), particularly at the intersections of energy, climate, and rural development. It directly advances SDG 7 (Clean Energy) by providing a renewable substitute for fossil fuels, thereby contributing to energy diversification and security. For example, India's ethanol blending program reached 19.93 percent in July 2025, significantly accelerating progress toward clean energy targets. SDG 13 (Climate Action) is supported through measurable reductions in greenhouse gas emissions; in Brazil, bioethanol adoption has prevented an estimated 600 million tonnes of CO₂ equivalent emissions since the introduction of flex-fuel vehicle technology.

Socioeconomic benefits further extend to SDG 1 (No Poverty) and SDG 8 (Decent Work), as biofuel programs generate rural employment, stabilize farmer incomes, and reduce dependence on volatile petroleum markets. India's policy framework, for instance, has created assured markets for agricultural produce while delivering direct financial benefits to farmers and distilleries. Moreover, when managed through non-food feedstocks and surplus grain policies, bioethanol production can complement SDG 2 (Zero Hunger) by safeguarding food availability and supporting agricultural resilience.

India's Bioethanol Success Story

India has rapidly emerged as a global leader in ethanol blending, reflecting a decade of sustained policy commitment and capacity expansion. The Ethanol Blended Petrol (EBP) Programme has recorded a remarkable increase from 1.53 percent in

2014 to 10 percent by 2022, and nearly 20 percent blending in July 2025, five years ahead of the original 2030 target. This transformation represents a thirteenfold increase in blending within a decade and highlights the effectiveness of coordinated government support. Ethanol production capacity has grown from 421 crore liters in 2013 to 1,810 crore liters in 2025, with contributions from molasses, grains, and dual-feed facilities.

Infrastructure expansion has been geographically broad, with Uttar Pradesh, Maharashtra, and Karnataka emerging as leading ethanol-surplus states. To sustain 20 percent blending, India requires around 1,016 crore liters annually, with total production capacity projected to reach 1,700 crore liters, accounting for operational efficiency. Post-estimates suggest total production in 2025 may reach 10.5 billion liters, reflecting favorable monsoon conditions and improved feedstock availability, though logistical and regional feedstock imbalances may slightly limit nationwide blending averages to below target levels.

India's Feedstock Diversification Strategy

A cornerstone of India's bioethanol program is the diversification of feedstock sources, enabled by the National Policy on Biofuels (2018, revised in 2022). This policy framework expands the range of permissible inputs to ensure supply security, reduce food competition, and enhance resilience. Traditional feedstocks such as sugarcane juice and molasses continue to dominate, with molasses-based ethanol remaining cost-competitive under government procurement. Grain-based ethanol, supported by minimum support price mechanisms, has expanded significantly, further stabilizing supplies.

At the same time, diversification into damaged food grains, broken rice, and other surplus or non-edible stocks reduces the risk of food-fuel conflicts. Alternative crops such as cassava, sweet sorghum, sugar beet, and potatoes add regional flexibility. Most notably, agricultural residues such

as rice straw, wheat straw, corn cobs, and bagasse represent India's largest untapped potential. The conversion of residues, particularly rice straw that is otherwise burned in northwestern states, not only provides a sustainable ethanol source but also directly addresses air pollution and environmental degradation.

Future Prospects and Challenges: Scaling Up Sustainably

The future of India's bioethanol program is closely tied to agriculture, as sustainable scaling depends fundamentally on how crops, residues, and land resources are managed. Achieving higher blending targets, such as twenty seven percent by 2027 and thirty percent by 2030, will require a transition away from heavy dependence on sugarcane and maize toward broader feedstock diversification. Agricultural residues such as rice straw, maize stover, and bagasse represent underutilized resources with multiple benefits. Their conversion into ethanol can reduce the widespread practice of burning in fields, improve air quality, and generate supplementary income for farmers. Such residue based pathways align ethanol expansion with sustainable farming practices, turning waste into value while addressing environmental challenges like soil nutrient depletion and air pollution. The adoption of advanced bioethanol also promotes diversification of cropping systems, supporting oilseeds, millets, and energy crops that can be integrated into existing rotations without displacing food production.

At the same time, agriculture faces critical challenges in supporting this transition. Feedstock supply is seasonal and unevenly distributed across regions, requiring organized collection systems, farmer incentives, and decentralized processing units to ensure steady supply chains. Climate variability, competing uses for residues such as fodder and soil enrichment, and fluctuating market prices may constrain availability unless strong institutional frameworks connect farmers to the ethanol value chain. Wider adoption of improved agricultural

practices such as conservation tillage, intercropping with energy crops, and residue management technologies will be central to securing long term feedstock supply. Looking further ahead, fourth generation bioethanol that relies on engineered algae and microorganisms will also depend on agricultural resources such as nutrients, land, and wastewater inputs, demonstrating the deep links between farming systems and future bioeconomies.

From an agricultural perspective, the prospects of ethanol expansion are not only about reducing fossil fuel dependence but also about creating new opportunities in rural economies. Farmers stand to benefit from diversified income streams, reduced waste of crop residues, and greater integration into clean energy markets. The challenge lies in ensuring that this transition is inclusive and does not increase regional disparities. A feedstock centered strategy that emphasizes residue mobilization, cropping system diversification, and farmer participation will be crucial for scaling up sustainably. By embedding bioethanol development within broader agricultural transformation, India can simultaneously advance food security, climate mitigation, and rural prosperity, making biofuels a driver of holistic agricultural development rather than a narrowly defined energy strategy.

Reference

Devi, A., Bajar, S., Sihag, P., Sheikh, Z. U. D., Singh, A., Kaur, J., Pant, D. (2023). A panoramic view of technological landscape for bioethanol production from various generations of feedstocks. *Bioengineered*, 14(1), 81–112. <https://doi.org/10.1080/21655979.2022.2095702>

Mukherjee, S. (2025). Bioethanol for “Bharat”(India): A Focused Journey Toward Sustainability. In *Value Addition and Utilization of Lignocellulosic Biomass: Through Novel Technological Interventions* (pp. 335-342). Singapore: Springer Nature Singapore.

Kazmi, A., Sultana, T., Ali, A., Nijabat, A., Li, G., & Hou, H. (2025). Innovations in bioethanol production: A comprehensive review of feedstock generations and technology advances. *Energy Strategy Reviews*, 57, 101634.

A review on second and third generation bioethanol production. SAE Technical Paper 2016-36-0515. <https://doi.org/10.4271/2016-36-0515>

Teixeira, A. C. R., Sodré, J. R., Guarieiro, L. L. N., Vieira, E. D., Medeiros, F. F., & Alves, C. T. (2016).

Soil Management: A Critical Approach Towards Sustainable Agriculture

Bavneet Kaur¹, Dr Ajeet Kumar²

¹B.Sc (H) Ag, ²Assistant Professor

Invertis University Bareilly

Soil is a fundamental resource in agriculture directly influencing the crop productivity. Hence; good quality soil & high quality crop productivity. Healthy soil is the key to growing food for the world's population. Thus, effective soil management practices must be practiced to maintain soil health, structure & soil fertility. By using practices like no-till farming, agroforestry & organic fertilizers, we can protect the soil and can prevent erosion and improves crop yields. Soil management plays a vital role in maintaining soil health, promoting ecosystem services & ensuring food security. Highlightening the various components and significance in soil management in modern agriculture, emphasizing on various modern techniques, organic amendments and sustainable land use etc.

Introduction

Soil management is an integral part of land management and focuses on operations, practices, treatments to conserve soil & enhances its performance for agricultural purposes. With growing population, pressure and climatic change threats, sustainable soil management has become more vital than ever. Soil management encompasses a number of strategies used by farmers to protect the soil and increase the soil stabilization. For example, in country like africa, farmers are restoring soil fertility & improving food security with ecological practices. Thus, healthy soil = healthy food. Whereas; improper soil practices lead to soil degradation erosion, nutrient loss and declining productivity. One of the most significant soil structure problems that growers around the world is facing is the soil compaction & low infiltration. Without the use of chemicals. Nanobubbles can improve soil flocculation which improves the soil structure by pulling together individual clay particles into larger aggregates due to these properties when nanobubbles treated water is applied to compact soil, compaction is reduced. For eg; one blueberry grower saw 20% reduction in soil compaction after applying nanobubbles.

Objectives:

- Understanding the principles of effective soil management.
- Analyze the impact of soil management on crop production.
- To explore sustainable soil practices for long-term agricultural use.

Importance of soil management:

- Food security: soil health directly impacts the crop yields and food quality.
- Ecosystem services: soil supports biodiversity (such as flora & fauna)
- Water infiltration and carbon sequestration.
- Climate change mitigation: soil can act as a carbon sink, reducing green house gas emissions.

Impact of soil degradation;

Soil degradation can lead to:

- 1) Soil erosion: loss of top soil, reduced fertility and increased sedimentation.
- 2) Nutrient depletion: reduced crop yields, decreased soil fertility and increased fertilizer use.

3) Soil salinization: reduced crop yields, decreased soil fertility and increased waterlogging.

Organic matter aid in soil structure, water -holding capacity, nutrient mineralization, biological activity & water and air infiltration rates.

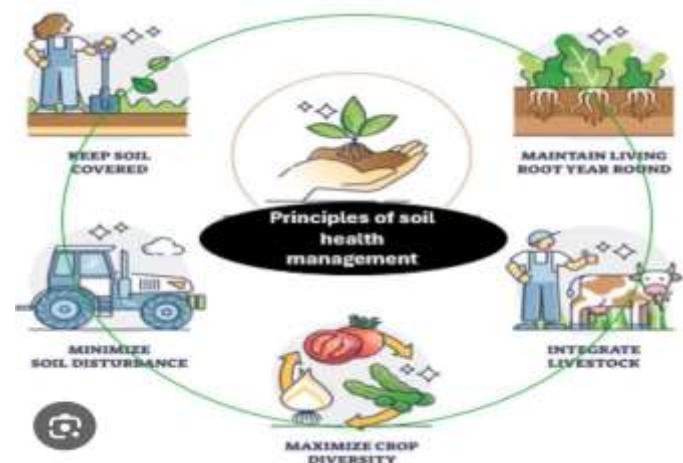
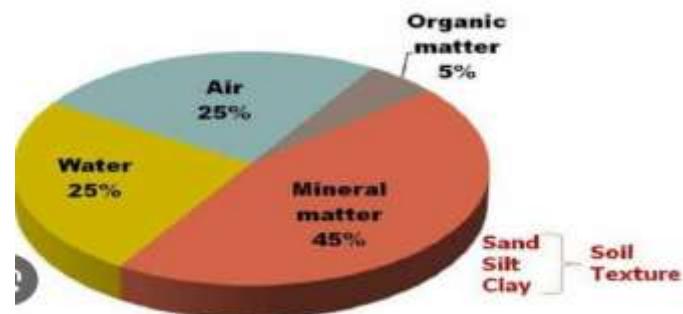
Strategies for sustainable soil management;

Soil fertility management: managing nutrient level using organic and inorganic fertilizers, green manures and crop rotation to maintain nutrient balance.

- 1) Soil structure and texture: improving soil porosity and aggregate stability for better water retention and root penetration through tillage, mulching and cover cropping.
- 2) Ph regulation: maintaining appropriate soil ph through liming or acidifying agents ensures optimal nutrient availability to crops.

Soil pH affects the availability of essential nutrients like: *nitrogen, phosphorus, potassium*. Low or high pH can cause

Nutrient deficiencies and impacts the plant health. Managing soil pH & nutrients is essential for healthy crops and high yields.



Thus; soil pH & crop yield

Soil conservation techniques: -

- *Contour plowing* and terracing to reduce erosion.
- Cover cropping to protect soil from rainfall and wind.
- No – till farming to preserve soil structure and microbial activity.
- Agroforestry as a long-term solution to maintain biodiversity and prevent degradation.

Importance of organic matter: -

Organic matter improves soil structure, increases microbial activity and enhances nutrient – holding capacity. Compost, animal manure and crop residues are vital sources.

Modern techniques in soil management: -

- *Precision agriculture* for targeted soil treatment.
- Remote sensing and gis for soil mapping.
- Soil testing kits for real time nutrient analysis.

Challenges and Recommendations: -

Challenges – soil salinity, erosion, overuse of chemicals and climate change.

Recommendations- promote farmer awareness, government subsidies for organic inputs and continuous research into sustainable practices.

- Policy support- government should promote sustainable soil management practices through policies and incentives.

- Farmer education – farmer's should be educated on sustainable soil management practices and their benefits.
- Research and development – continued research is needed to develop and refine sustainable soil management practices.

enhance soil health and productivity. Polymakers researchers and farmers must collaborate to adopt soil – friendly practices for a secure agricultural future.

Thus, by prioritizing sustainable soil management we can ensure a healthy and productive soil resource for future generations.

Conclusion: -

Effective soil management is the cornerstone of sustainable agriculture. Integrating traditional wisdom with modern technologies can significantly

Vertical Farming and Urban Agriculture: Innovations in Food Production

Shiv Shankar Gope

Lovely Professional University, Jalandhar, Punjab

Introduction

Imagine buying salad greens that were grown two streets away, not shipped from hundreds of miles. Cities are growing fast. More people live in towns now than ever before. This growth means cities need more food close by. Traditional farms are still important, but they cannot always meet city demand quickly or cheaply. That is why new methods like vertical farming and urban agriculture are becoming more common. These methods bring food growing into the city. They also save water and space, and give people fresh food faster.

What is Vertical Farming?

Vertical farming means growing plants in layers, one above the other. Instead of wide fields, plants grow in tall racks or stacked shelves. These farms usually work inside buildings or special containers. They use systems such as hydroponics (plants in water with nutrients), aeroponics (nutrient mist around roots), and aquaponics (plants and fish together). Special lights and machines control light, temperature, and water. Because of this control, farmers can grow crops all year. Vertical farms can be small or very large. They often grow leafy greens, herbs, and some vegetables.

What is Urban Agriculture?

Urban agriculture is any growing of food inside a city. It can be a small balcony pot, a community garden, a rooftop farm, or an indoor hydroponic system. People can also keep small numbers of chickens, bees, or fish in cities. Urban agriculture helps neighbours grow food together. It brings fresh produce into local markets and schools. It also turns unused spaces into green places for people to enjoy.

Why These Ideas Matter

There are many good reasons to grow food in cities. First, food travels less to reach people, so it stays fresh and costs less to move. Second, city farms use less water and fewer chemicals than some big farms. Third, growing food near people creates jobs and teaching opportunities. Fourth, green spaces in cities help clean the air and make places nicer to live. Finally, local food systems help a city stay strong when supply chains break — for example, during storms or other problems.

Benefits of Vertical Farming

Another major benefit is reduced dependency on fossil fuels since food transportation distances are shorter. Vertical farms also allow for precise nutrient management, which enhances flavor and nutritional value of crops.

- Uses less land: Growing up instead of out saves space.
- Saves water: Many systems reuse water, so they need much less.
- Fewer chemicals: Indoor systems have fewer pests, so farmers use fewer pesticides.
- Year-round crops: Weather does not stop production.
- Fresh food: Short trips from farm to table keep food fresher.

How Vertical Systems Work

Most indoor farms use trays or shelves. Plants sit in trays with water and nutrients. LED lights provide the light they need. Sensors check temperature, humidity, and nutrients. A computer or phone app often helps farmers watch their plants. If sensors show low water or wrong temperature, the system

can give more water or change the heat. This careful control helps plants grow faster and stay healthy.

Types of Urban Farms People Use

Other types include vertical wall gardens installed on the sides of tall buildings, which serve both decorative and food production purposes. Indoor mushroom cultivation is another growing trend in urban areas, as mushrooms require little light and thrive in controlled environments.

- Rooftop farms: Gardens on top of buildings.
- Community gardens: Shared land where neighbours grow food.
- Indoor hydroponic farms: Plants grown under lights inside buildings.
- Container farms: Farms inside shipping containers that can be moved.
- Aquaponics: Fish and plants grow together and share nutrients.

Which Crops Work Best

Leafy greens, herbs, and salad vegetables are the best for urban farms. These crops grow fast and sell well. Some fruits and tomatoes also do well with good light and care. Root crops like potatoes need more space and are harder in vertical systems. Farmers choose crops that grow fast and give steady income.

Costs and Money Matters

Starting an indoor farm costs money. You pay for lights, racks, sensors, and building space. Running the farm needs electricity and staff. But urban farms can sell directly to restaurants, shops, or customers. This saves on transport and middlemen. Over time, some farms earn back the start cost. Small farms can start with low money using simple hydroponic kits on rooftops or in spare rooms.

Energy and Water

Energy is needed for lights and pumps. Using solar panels or efficient LEDs can lower energy bills. Water use is usually much lower than field farming

because systems recycle water. That helps in cities where water is limited.

Jobs, Health, and Community Benefits

Urban farms create local jobs. People learn new skills in farming and technology. Schools can use farms to teach children about food and nature. Community gardens bring people together. Fresh local food helps people eat better. Green spaces also improve mental health — being near plants often makes people feel calmer.

Challenges and How to Solve Them

There are real problems too. The start cost is high for big systems. City rules may not allow certain farms. People also need training to run high-tech systems. To solve these problems, city leaders can give small grants or low-interest loans. Training programs can teach people to run farms. Changing rules and building codes can make it easier for farms to start. Partnerships between city governments and private companies also help.

Practical Steps to Start a Small Urban Farm

Networking with local farmer cooperatives or extension services can provide valuable support. Governments sometimes run pilot programs where they provide starter kits for beginners, making it easier for new farmers to enter the field.

1. Choose a space — rooftop, balcony, spare room, or container.
2. Pick a simple system like hydroponic trays or a small aquaponic kit.
3. Start with easy crops such as lettuce, spinach, and herbs.
4. Learn to read sensors and check water and nutrient levels.
5. Find buyers — local markets, restaurants, or neighbours.
6. Reinvest small profits to grow slowly.

Rooftop Garden

Short Case Stories

In Singapore, vertical farming companies supply a significant portion of leafy greens sold in supermarkets. In the United States, cities like New York and Chicago have repurposed old warehouses into indoor farms that supply thousands of households year-round.

- **Small City Farm:** A small rooftop farm started by a group of friends sells lettuce to nearby cafes. They learned from videos and a local training center.
- **School Garden:** A school uses indoor hydroponics to teach students. The kids eat what they grow in the cafeteria.

Vertical Farming

What the Future Might Look Like

In the future, smarter systems will use artificial intelligence to watch plants and make decisions. Robots could plant and harvest. Solar panels and better batteries will lower energy costs. New crop varieties may be bred for indoor growing. As costs drop, more city buildings will include farms. Local food will become more common and help cities become stronger and greener.

Short Summary

Vertical farming and urban agriculture bring food growing into cities. They save space and water, reduce transport, and give people fresh food nearby. While costs and rules are a challenge, training, support, and better technology can help. By starting small and working with the community and city leaders, urban farms can grow and help feed more people.

Conclusion

Urban farms are not just a fancy idea. They are practical steps toward safer, fresher food in cities. These farms help the environment, create jobs, and bring people together. With good planning and support, vertical farming and urban agriculture can become a regular part of city life. They are a strong solution for the food needs of our growing towns and cities.

References

1. Food and Agriculture Organization (FAO). Urban Agriculture: Policy and Practice.
2. Despommier, D. The Vertical Farm: Feeding the World in the 21st Century.
3. Singapore Food Agency. Urban Farming Initiatives and Reports.

Next-Generation Molecular Methods for Plant Disease Diagnosis

Akash Kumar¹, Sanjeev Ravi²

¹ Research scholar, ²Assistant Professor

¹Department of Plant Pathology, College of Horticulture, Veer Chandra Singh Garhwali Uttarakhand University of Horticulture and Forestry, Bharsar, Pauri Garhwal, Uttarakhand.

²Department of Plant Pathology, College of Hill Agriculture, Veer Chandra Singh Garhwali Uttarakhand University of Horticulture and Forestry, Bharsar, Pauri Garhwal, Uttarakhand

Phytopathogenic species significantly reduce crop yield and quality, threatening sustainable agriculture worldwide. The increasing emergence of new plant diseases is largely driven by climate change, global trade and the rapid adaptability of pathogens. Effective disease management depends on timely, accurate detection to limit pathogen spread through immunization and prophylactic strategies. Traditional culture, PCR, sequencing and immunology techniques remain essential but have limitations in speed and sensitivity. Recent advances, including next-generation molecular methods and point-of-care biosensors, offer rapid, reliable, and field-deployable diagnostics. These innovations empower farmers and researchers to make informed decisions, improving plant health management and safeguarding food security.

Introduction

Plant pathogens pose a major global challenge to agriculture, threatening food security and ecosystem stability. Nearly half of all habitable land is now devoted to farming, and the growing human population continues to increase pressure on agricultural systems. Plant diseases can cause significant yield losses in key crops such as maize, rice, wheat, potatoes and soybean, reducing both productivity and quality. A considerable share of these losses results from the accidental introduction of invasive pathogens via international trade and transportation. Human-driven changes, including habitat modification and intensive farming, have expanded pathogen ranges, promoted genetic exchange, and accelerated the emergence of more virulent strains. Such outbreaks highlight the vulnerability of agricultural and forestry ecosystems to globalized movement and environmental change. Climate change further amplifies these threats by altering temperature patterns, precipitation cycles, and extreme weather events, creating favorable conditions for disease spread across new regions. Accurate and timely detection of plant pathogens is essential for effective disease management. Modern diagnostic tools must be specific, sensitive, reliable,

cost-effective and capable of detecting pathogens in complex samples such as soil or plant extracts. This chapter reviews conventional and advanced detection methods from cultivation-based, immunological and nucleic acid-based strategies to cutting-edge technologies like biosensors and high-throughput sequencing evaluating their methodologies, strengths and limitations to guide appropriate selection for research and field applications.

2. Types of detection methods

Plant pathogen can be diagnosed by both direct and indirect methods. Direct methods usually comprise the analysis of plant pathogens (such as bacteria, oomycetes, fungi, and viruses) or biomolecular markers (such as nucleic acids, proteins, and carbohydrates) extracted from infected plant tissues. Diagnosis of plant diseases through alteration in physiological or histological indices such as leaf surface temperature or humidity, spectroscopic features of plant tissues, morphology, growth rate and emissions of volatile organic compounds (VOCs) are involved in indirect method. A wide variety of spectroscopic, electrochemical, or molecular technologies could serve as direct or indirect detection methods. Adoption and implementation of new technologies in agriculture

and plant science have been increased in recent years. Numerous applications of the newly developed CRISPR technology have been found in agriculture and food industry. Some of the techniques have been discussed below.

2.1 Immunological Techniques

Immunological assays detect plant pathogens using specific antibodies that bind to pathogen-derived antigens. These interactions are highly specific and can be visualized using enzymes, fluorophores, or nanoparticles. Both polyclonal and monoclonal antibodies are commonly used. A variety of immunoassays—such as ELISA, lateral flow assays, dot immunobinding assays, and tissue immunoblotting—are employed for plant pathogen detection due to their specificity, sensitivity, and rapid results.

A. Enzyme-Linked Immunosorbent Assay (ELISA): ELISA is a widely used serological tool for detecting plant pathogens, relying on the specific recognition of antibodies. While polyclonal antibodies are common, they can cause high background reactions with host proteins, a problem minimized by commercially available monoclonal antibodies. Variants such as direct, indirect, and double antibody sandwich ELISA (DAS-ELISA) provide high specificity and can distinguish closely related strains. ELISA is simple, rapid, and allows simultaneous testing of multiple samples using multi-well plates. However, antibodies require careful storage, and developing new ones can be costly and time-consuming. Despite these limitations, ELISA remains a key diagnostic method in agriculture.

B. Lateral Flow Immunoassays (LFIA): LFIA, also called the dipstick method, is a rapid, simple, and versatile serological technique using polyclonal or monoclonal antibodies. It consists of a nitrocellulose membrane on a

plastic strip with immobilized pathogen-specific antibodies, while labeled antibodies (latex, colloidal gold, or silica) bind target antigens for visual detection. LFIA can be multiplexed for detecting multiple analytes but is limited by sample volume, requiring pretreatment for solids or complex matrices. It has been used to detect *Xanthomonas* strains in plants.

C. Immunosorbent Electron Microscopy (ISEM): ISEM combines serological specificity with electron microscopy visualization, ideal for phytoplasma detection and confirmation with minimal samples.

Antibodies bound to protein A-gold complexes target pathogens such as *Phytophthora cinnamomi* and *Pythium* species.

D. Dot Immuno-binding Assay (DIBA): DIBA is similar to ELISA but uses

a nitrocellulose or nylon membrane as the solid support and a chromogenic substrate for visible pathogen detection. It has been applied to detect resting spores of *Plasmodiophora brassicae*.

E. Tissue Immuno Blot Assay (TIBA): TIBA, a variant of DIBA, involves direct blotting of plant tissues or insects on membranes for antibody-based detection. It is simple, rapid, and useful for analyzing pathogen distribution in tissues, though sap components may interfere. Direct TIBA (DTIBA) has been used to detect *Fusarium* spp. in tomato and cucumber.

2.2 Nucleic Acid-Based Assays

Modern plant pathogen detection relies on high-throughput molecular techniques, including PCR, real-time PCR, nested PCR, LAMP, RCA, and nucleic acid sequence-based amplification. PCR-RFLP and PCR-DGGE are commonly used for species identification and genotyping. Advanced

methods such as multiplex PCR, in situ PCR, magnetic capture-hybridization PCR, DNA micro/macroarrays, and next-generation sequencing (e.g., RNA-Seq) enhance specificity, sensitivity, and accuracy. These DNA-based techniques allow early detection of pathogens even at low concentrations, providing reliable diagnosis during initial infection stages.

- A. Conventional PCR (C PCR):** Amplifies specific DNA fragments using primers, DNA polymerase, and a thermal cycler. Detection is typically via agarose gel electrophoresis. cPCR is highly sensitive and specific but time-consuming, prone to contamination, cannot distinguish viable from non-viable cells, and requires a laboratory setup.
- B. Multiplex PCR:** Simultaneously detects multiple DNA targets in a single reaction, saving time and cost. It is useful when different pathogens infect the same host but is prone to non-specific amplification and variable sensitivity among fragments.
- C. Nested PCR (nPCR):** Uses two rounds of amplification with different primer sets to increase sensitivity and specificity, ideal for low-titer pathogens. However, it is time-consuming and carries a higher risk of cross-contamination.
- D. Co-operational PCR (Co-PCR):** Employs four primers to amplify two overlapping fragments in one reaction. Offers high sensitivity, minimizes contamination, and allows real-time detection.
- E. Quantitative/Real-Time PCR (qPCR):** Monitors PCR amplification in real-time and quantifies DNA. Faster and more sensitive than cPCR, allowing early detection even at low pathogen concentrations. Expensive equipment is a limitation.
- F. Digital Droplet PCR (ddPCR):** Partitions samples for absolute quantification of nucleic

acids, highly sensitive, reproducible, and suitable for low-titer pathogens and multiplexing.

- G. End-Point PCR:** Amplifies DNA in repeated cycles with detection post-amplification. It is cost-effective but less efficient for closely related pathogens and may be time-consuming.

2.3 Next-Generation Sequencing (NGS)

Next-generation sequencing (NGS), or high-throughput sequencing (HTS), enables rapid and comprehensive detection of plant pathogens without prior knowledge of their sequences. DNA-based NGS involves DNA isolation, fragmentation, library preparation, parallel sequencing, and bioinformatics analysis, while RNA-Seq provides enhanced transcriptome coverage and resolution. Advanced methods include pyrosequencing, polony sequencing, and Solid, which allow detection of novel pathogens and study of genomic variations such as SNPs, INDELs, and structural variants. NGS also facilitates population genomics and comparative genome studies. Third-generation single-molecule sequencing offers further advantages in accuracy and read length. Limitations include high computational demand, long data analysis time, low RNA yield or quality, and the need for specialized bioinformatics and mycological expertise.

2.4 CRISPR/Cas-Based Assays

The CRISPR/Cas system, including Cas9, Cas12, and Cas13, has emerged as a powerful tool for plant pathogen detection due to its high specificity and sensitivity. It enables point-of-care diagnostics capable of detecting pathogens at low levels, often within 2 hours, and with minimal equipment. Combining CRISPR/Cas with preamplification methods such as PCR, LAMP, or RPA further enhances sensitivity, allowing detection at picomolar levels and identification of SNPs or strain variants. Despite its advantages, challenges remain, including limited multiplexing capacity and the need for labor-

intensive sample preparation. CRISPR/Cas assays have been successfully developed for detecting RNA viruses in crops such as potato, tobacco, and apple.

2.5 Cultivation-Based Methods

Cultivation-based approaches detect plant pathogens by isolating them on selective or semi-selective media, followed by confirmation using morphological, biochemical, molecular, or immunological tests. This method is simple, reliable, and allows differentiation of viable from non-viable organisms, as well as quantification of pathogens. Sensitivity can range from 10 – 10^4 CFU/mL and may be improved via enrichment steps. Limitations include the inability to culture obligate pathogens, time-consuming protocols, and unsuitability for viral detection, which often relies on host plants for symptom observation. Standardized protocols exist for many bacterial and fungal pathogens, often supplemented with PCR-based confirmation.

3. Conclusion

Advances in molecular biology have revolutionized the detection and diagnosis of fungal plant pathogens, enabling precise identification of novel, emerging, and re-emerging species. Beyond

traditional cultivation and conventional PCR, modern approaches such as, PCR variants, hybridization techniques, and next-generation sequencing (NGS)—offer highly sensitive detection of both culturable and unculturable pathogens, even in mixed infections. Quantitative PCR allows accurate pathogen quantification at very low levels, while NGS provides comprehensive insights into pathogen genomes, facilitating the discovery of previously unknown species. These cutting-edge techniques are transforming plant disease diagnostics, offering faster, more reliable, and highly specific tools for safeguarding global agriculture.

Reference's

Bhosale, S., Napte, N., & Pharate, S. (2023). Molecular tools for diagnosing plant pathogens. In: G. Chowdhury, A. Suansia, N. S. V., & A. Alok (Eds.), *Recent innovations and approaches in plant pathology* (Vol. 2, Chap. 10). Stella International TM.

Cultivating Change: Big Data Role in Transforming Agriculture

Jagadish* H.M., Gajanand Shantappa Bhairagond

Ph.D. Scholar, Dept. of Agril. Extension, College of Agriculture, UAS, GKVK, Bengaluru
(Karnataka)

Meghana. N.

Ph.D. Scholar Ph.D. Scholar, Division of Agril. Extension, IARI New Delhi

Introduction

The world is witnessing an unprecedented surge in data, and agriculture is no exception. Every season, trillions of data are generated from satellites, sensors, drones and farm machinery. This surge of "Big Data," known for its volume, velocity, variety, and value, is fast becoming the backbone of modern farming. Globally, the agricultural Big Data market is projected to cross USD 2.4 billion by 2025, reflecting its transformative potential. For farmers, data has become as valuable as soil and water. By analyzing weather forecasts, soil health, and crop patterns, Big Data enables precision farming, ensuring that inputs such as water, fertilizers and pesticides are applied exactly where and when needed. This not only increases yields but can cut input costs by up to 20–30 percent, while also reducing environmental damage. Farmers are now able to predict pest infestations, optimize irrigation schedules, and adopt climate-resilient practices that strengthen food security. Big Data is emerging as a vital tool for climate-smart agriculture. It supports real-time advisories, helps monitor soil moisture in rainfed regions, and bridges information gaps for smallholders who often lack access to timely knowledge. Studies suggest that adopting data-driven advisories can increase crop productivity by 15–20 percent, a game-changer for a country where agriculture sustains nearly half the population. Beyond crop management, Big Data is transforming the entire agri-value chain from genomic research that accelerates the breeding of high-yield varieties, to livestock monitoring systems that track animal health, and supply chain analytics that reduce post-harvest losses. On the ground, "smart farming" is being redefined by the incorporation of technologies

like artificial intelligence, machine learning, and the Internet of Things (IoT). But there are still difficulties. Important challenges to overcome include data privacy, system interoperability, and developing a strong rural data infrastructure. How inclusive this digital transformation actually becomes will depend on making sure that even small and marginal farmers can profit from these innovations. A new era of smarter, greener, and climate change-resilient farming is dawning as agriculture embraces the power of big data.

Big Data:

- The term "big data" describes extremely big and detailed data sets that are difficult to handle or analyse using spreadsheets and other conventional data processing tools.
- Big data contains structured data (financial transactions) unstructured data (social posts or videos) and semi data sets, like those used to train (large language models) for AI.
- BDA sector in India is expected to increase by around 14 billion USD by 2025 and will register a growth rate of 26% over the next five years.
- India is currently among the top 10 data markets in the world. (Source: The economic Times)

Types of Big Data:

1. Structured Data

- Data that is well-organized and easily searchable, stored in a predefined format like rows and columns.
- Financial data, Demographic details

2. Unstructured Data

- Data that lacks a predefined structure and cannot be easily stored in traditional row-column relational databases
- Social media posts, Audio files, Images and videos, customer comments

3. Semi-Structured Data

- a combination of unstructured and structured data that includes both unstructured content and organizational characteristics.
- Emails, Geo-tagged Data, Smartphone Images

Characteristics of Big Data

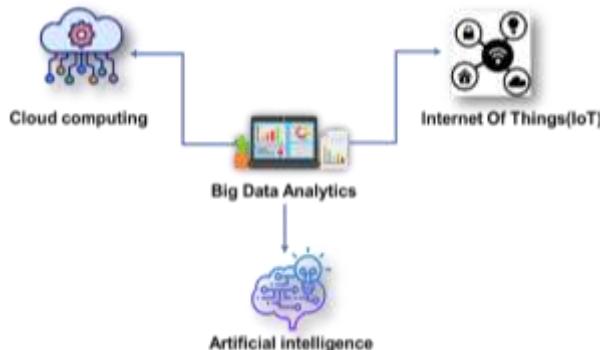
1. **Volume** – Refers to the massive amount of data generated every second, too large for conventional methods to handle.
2. **Velocity** – The speed at which data is created, collected, and processed in real time.
3. **Variety** – Data comes in different forms: structured, semi-structured, and unstructured.
4. **Value** – Data is meaningful only if it provides useful insights for decision-making.
5. **Veracity** – The accuracy and reliability of data, free from errors or inconsistencies.
6. **Validity** – Ensuring data is correct, relevant, and suitable for future use.
7. **Variability** – Fluctuations or inconsistencies in data that may affect analysis.
8. **Viscosity** – The delay or lag in data transmission between sender and receiver.
9. **Virality** – How quickly data spreads across platforms and devices.
10. **Visualization** – Presenting data graphically to identify patterns and support decisions.

Comparison of big data Vs traditional data

Traditional Data	Big Data
Small in size and easy to manage, usually stored in spreadsheets or databases.	Vast and complex, collected in structured, semi-structured, and unstructured formats.
Collected manually from internal systems like customer records and transactions.	Generated automatically from diverse sources such as IoT devices, satellites, and social media.
Analyzed using basic statistical methods, giving limited insights.	Requires modern tools like AI, machine learning, and data mining to deliver deep, predictive insights.
Processed in batches, making it slower and less dynamic.	Processed in real time, enabling quick and smart decision-making.
Cheaper to store, easier to secure, and manageable on a single server.	More costly to store, harder to secure, and requires distributed, decentralized systems.
Best suited for simple, small-scale business processes.	Ideal for complex, large-scale operations that demand precision and efficiency.

Big Data Tools and Technologies

HARVIST System: (Heterogeneous Agricultural Research Via Interactive, Scalable Technology) combines historical crop yield data, RS, and weather station data to provide precise forecasts.


ML techniques: clustering and Support Vector Machines (SVMs).

Waikato Environment for Knowledge Analysis (WEKA System) Preprocessing, feature selection, classification, and clustering are all supported by this data mining tool. Also beneficial for examining sizable agricultural datasets.

R Programming for Agriculture : An open-source language for big data analysis, data visualisation, and statistical computing. widely used in agriculture to analyse weather and soil data.

Key Technologies Powering Big Data Analytics

Cloud Computing: Large volumes of data can be efficiently stored and processed by enterprises thanks to cloud computing's scalable storage and processing capacity. It is essential to Big Data because it provides on-demand resources for real-time processing, machine learning, and data analytics.

Internet of Things (IoT): IoT devices generate vast amounts of real-time data from sensors, smart devices, and connected systems, contributing significantly to Big Data. The integration of IoT with Big Data helps in predictive maintenance, smart city development, and enhanced decision-making through data-driven insights.

Artificial Intelligence (AI): AI utilizes Big Data for training models, making predictions, and automating processes, enhancing efficiency across industries. By leveraging machine learning algorithms, AI extracts meaningful patterns from Big Data, improving applications like fraud detection, healthcare diagnostics, and personalized recommendations.

Big data in agriculture

Acquiring, storing and analysing of enormous volumes of data from multiple sources, such as sensors, satellites, drones, and weather stations, in order to enhance farming methods and decision-making. Crop yields can be raised, resource management can be optimised, and agricultural

operations can become more sustainable and efficient overall with the use of this data.

Steps in Big Data Analytics

1. Data Extraction: Raw data is collected from multiple sources such as sensors, satellites, weather stations, farm reports, and IoT devices. This includes both structured and unstructured data. Example: IoT sensors track soil moisture, satellites capture crop growth, and weather stations provide climate forecasts.

2. Data Pre-Processing: Raw data is refined to ensure quality before analysis. This stage involves several sub-steps:

- **Data Cleaning** – Removing errors, inconsistencies, and missing values.
- **Data Integration** – Combining datasets from different sources into one.
- **Data Transformation** – Converting data into a suitable format for analysis.
- **Data Reduction** – Minimizing data volume while keeping meaningful information intact.

3. Data Storage: Processed data is securely stored and managed in advanced systems, often cloud-based, to allow fast access and large-scale analysis.

Challenges of BDA in Agriculture

- Ensuring Data Security and Protecting Farmer Privacy
- Bridging the Technical Skill Gap Among Farmers
- Tackling the Impacts of Climate Change on Agriculture
- Overcoming Data Collection and Integration Issues
- Addressing Rural Infrastructure Limitations
- Managing High Costs of Technology and Investment

- Handling Unstructured and Diverse Agricultural Data
- Delivering Timely and Accurate Predictions for Farmers
- Navigating Government Policies and Regulations
- Encouraging Wider Adoption of Digital Technologies

Benefits of BDA in Agriculture

- Supporting Smarter and Informed Decision-Making
- Improving Resource Efficiency and Reducing Waste
- Detecting Pests, Diseases, and Soil Problems Early
- Enabling Precision Farming Through Advanced Tools

- Promoting Sustainability and Eco-Friendly Practices

Opportunities with BDA

- Transforming Agriculture with Smart Farming and Mechanization
- Harnessing AI and Machine Learning for Better Predictions
- Revolutionizing Farm Work with Agri-Robotics and Automation
- Empowering Farmers Through Real-Time Decision Support Systems
- Strengthening Supply Chains and Expanding Market Linkages

Role of Women Farmers and Women Self-Help Groups (SHGs) in Agricultural Innovations and Competitions

¹Ashish Kumar Nagar*, ²Dr. E. Shirin Hima Bindu, ³Dr. N Krishna Priya, ⁴Rita Fredericks,

⁵Dr. Anil Kumar

¹Assistant professor, Department of Agriculture extension education, Sourabh Agriculture College Kheda Hinduon City Rajasthan

²Assistant Professor, College of Community Science, Hyderabad, PJTAU

³Coordinator, DAATTC Kadapa, ANGRAU, Guntur

⁴CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

⁵Assistant Professor, School of Agriculture, Eklavya University Damoh, M.P

Women farmers and Women Self-Help Groups (SHGs) are catalysts of change in agricultural innovations, rural entrepreneurship, and competitive platforms. They are involved in contributing to crop production, livestock, post-harvest processing, value addition, and sustainability. SHGs act as catalysts by facilitating access to credit, technology, skill development, and collective marketing opportunities. By engaging actively in farm shows, fairs, and innovation competitions, women exhibit grassroots innovations, increase visibility, and receive recognition as innovative farmers. Women-led initiatives, notwithstanding limitations like limited land rights, restricted access to resources, and gender discrimination, have proved exceptional in enhancing livelihoods, ensuring food security, and supporting inclusive rural development. Strengthening women's participation in innovations and competitions through policy support, capacity building, and market linkages is vital for achieving sustainable and gender-equitable agricultural growth.

2. Introduction

Women constitute nearly 50% of the agricultural workforce in India and play a crucial role in farming, livestock management, food processing, and value addition. Despite their significant contribution, women farmers often remain invisible and under-recognized in policy frameworks. The development of Self-Help Groups (SHGs) and women-focused programs has facilitated rural women to take a proactive role in agricultural innovations, entrepreneurship, and competitions. These forums not only improve livelihood security but also promote gender equality and inclusive growth at the rural level.

3. Role of Women in Agriculture

Women are the strength of Indian agriculture and play an important role at each stage of farming operations, from seed choice to post-harvest handling and marketing. Women are actively involved in seed selection, sowing, transplanting, weeding, irrigation, harvesting, threshing, and

storage in crop production. Their technical competence and practical experience assure seed quality, timely management, and optimal use of resources. In horticulture, women are crucially involved in kitchen gardening, vegetable growing, floriculture, and orchard management, which not only improve family nutrition but also yield additional income.

Women work in fodder production, feeding, milking, milk processing into products such as ghee, curd, and paneer, and goat and poultry rearing in livestock and dairy farming. The activities offer nutrition security and a constant source of income. Women also engage in post-harvest processing and value addition, which involves cleaning, grading, and processing grains, pulses, spices, fruits, and oilseeds into products suitable for the market. In addition, in agroforestry and non-timber forest products (NTFPs), women are involved in collection, processing, and marketing of fuelwood, medicinal plants, and forest produce.

Source: <https://devpolicy.org/women-working-in-and-sustaining-agriculture-worldwide>

4. Women SHGs: Catalysts of Agricultural Innovations

Women Self-Help Groups (SHGs) have become robust platforms for rural women to participate in collective action, financial inclusion, and agricultural innovation. Through savings pooling and availing of microcredit, SHGs empower women to start and scale up various agri-based ventures. Perhaps the most significant role of SHGs lies in access to finance and technology, where they avail small loans to set up activities like mushroom cultivation, vermicomposting, beekeeping, poultry rearing, and fisheries.

By collective farming, SHGs enable joint purchase of seeds, fertilizers, and other inputs and also enable sharing of farm machinery via custom hiring centers, saving costs and risks for each individual. SHGs also enhance skill improvement by conducting training on contemporary technologies, organic farming, sustainable agriculture, and agro-processing.

Apart from this, SHGs are also instrumental in value addition and marketing, allowing the women to convert raw produce into branded items such as pickles, jams, papads, millet snacks, and spices, which are sold together under SHG brands. Use of ICT tools, such as mobile applications, WhatsApp groups, and platforms like e-NAM, has further improved their information access and access to larger markets.

Prominent case studies like the Kudumbashree Mission in Kerala and Mahila Kisan Sashaktikaran Pariyojana (MKSP) reveal how SHGs help women empower themselves to innovate, diversify livelihoods, and solidify rural economies.

Source: <https://www.iasgyan.in/daily-current-affairs/shgs-in-india>

5. Women Farmers and Agricultural Innovations

Female farmers have always been at the center of bottom-up agricultural innovations, combining traditional knowledge with adopting new technologies to solve food security, soil fertility, and climate resilience challenges. Their innovations tend to be practical, affordable, and sustainable, hence easily adaptable to smallholder farming systems.

One of the most important contributions of women is in seed conservation, where they operate traditional seed banks to preserve local varieties and provide seeds for subsequent seasons. Women are also actively involved in preparing and applying biofertilizers and biopesticides based on locally available materials like cow dung, neem extract, and botanical preparations so that they minimize the use of chemical inputs.

Women also embrace climate-resilient agricultural practices, such as mixed cropping, kitchen gardening, mulching, and water-saving measures that increase home nutrition and build climate variability resilience. To alleviate physical workload, women farmers have adapted drudgery-reducing equipment, like upgraded sickles, weeding

tools, and threshers, which both save time and energy.

6. Role in Agricultural Competitions

Involvement of women farmers and Self-Help Groups (SHGs) in farm competitions has become an effective means to acknowledge their efforts, enhance confidence, and provide them with greater exposure at the local, state, and national levels. These competitions provide women with the platform to demonstrate their skills, innovative practices, and value-added products, and promote peer learning and networking as well.

One of the most prominent platforms is fairs and exhibitions, like Krishi Melas, state-level expos, and national expos, where women showcase innovative products, farm produce, handicrafts, and value-added products like pickles, millet products, or herbal preparations. In competitions for skills, women showcase skill in kitchen gardening, food processing, organic cultivation, and agricultural crafts, which reflects their ingenuity and practical expertise.

SHGs and women farmers are also involved in innovation competitions conducted by institutions such as ICAR, ATMA, and state agricultural departments. These platforms identify grassroots innovations in climate-resilient agriculture, integrated pest management, and agro-processing technologies. Entrepreneurship awards under initiatives such as the National Rural Livelihood Mission (NRLM), agri-startup awards, and women entrepreneur challenges also provide both recognition, money, and access to markets and investors.

7. Success Stories

Throughout India, various inspiring examples demonstrate the impact that women farmers and SHGs have made to change agriculture through innovation, entrepreneurship, and collective action.

The Kudumbashree Mission in Kerala is one of the greatest successes of women's movements. Thousands of women SHGs of Kudumbashree have ventured into vegetable farming, joint purchase of inputs, and group marketing, thus securing food and earning consistent income. Numerous groups have also ventured into agro-processing and innovative activities.

In Telangana, women farmers have been empowered by the Deccan Development Society (DDS) to conserve and promote traditional varieties of millets through community seed banks. This has not just restored nutritional security but also increased climate change resilience.

Maharashtra Women Dairy Cooperatives demonstrate another aspect of women's leadership in agriculture. SHGs here run milk collection centers, have small-scale processing units, and make value-added dairy products, greatly enhancing rural household incomes and women's bargaining power in markets.

In Uttar Pradesh and Bihar, women SHGs have also initiated custom hiring centers (CHCs) for tractors and farm equipment. This has helped in minimizing drudgery, decreasing cultivation expenses of small farmers, and generating local employment.

8. Challenges Faced by Women Farmers and SHGs

While women farmers and Self-Help Groups (SHGs) have done much to address agriculture and rural development, they still face numerous challenges hindering them from reaching their full potential.

Key is restricted ownership of land, which limits women's decision-making authority in farm operations and their right to institutional credit or subsidization. Without secure titles, women are typically reliant on male relatives for access to resources. Likewise, their access to credit, inputs, and markets is typically limited by a lack of

collateral, restricted mobility, and poor market linkages.

The drudgery and workload involved in the manual farming methods further contribute to their load, as women often have to cope with household responsibilities along with farm work. Though they have the necessary expertise, women's involvement in policy making and extension activities is low, with consequent low exposure to new technologies, training, and financial assistance schemes.

A critical challenge is gender bias in training, awards, and agricultural competitions. Women's innovations and efforts are downgraded against men, making them lose visibility and further discouraging wider participation.

All these challenges must be tackled with a gender-sensitive strategy in policies, capacity-building programs, and institutional support systems so that women farmers and SHGs can be equally enabled to flourish as partners in agricultural growth.

9. Strategies for Strengthening Women's Role

To maximize the potential of women farmers and Self-Help Groups (SHGs) in agriculture development, building capacity, making resources accessible, and providing enabling environments for innovation and appreciation are critical interventions.

1. Capacity Building: Ongoing training interventions on latest agricultural technologies, climate-resilient agriculture, agribusiness management, and financial literacy can improve women's technical skills and competence. Exposure visits and demonstrations of interventions further enhance their hands-on capability.

2. Access to Resources: Securing women's rights over land, institutional credit, input subsidies, and access to farm machinery via custom-hiring

centers has the potential to improve productivity and alleviate drudgery.

3. Market Linkages: Creating SHG-based brand initiatives, empowering women-led cooperatives, and enabling participation in e-commerce platforms allow women to tap larger and more remunerative markets.

4. Incentives in Competitions: Developing exclusive categories for women within agricultural exhibitions, fairs, and awards gives them recognition and stimulates greater participation in innovation competitions.

5. Policy Support: Governments and institutions must develop gender-responsive policies, incorporate women's issues into extension programs, and provide targeted budgeting for women in agriculture.

6. ICT & Digital Platform Use: Mobile advisory services, WhatsApp groups, and marketing online portals can improve communication, offer information in a timely manner, and widen women's networking scope.

9. Conclusion

Women farmers and SHGs are agriculture changemakers who lead innovations, provide household food security, and enhance rural livelihoods. Their entry into competitions and exhibitions not only identifies them but also motivates other women to adopt innovative technologies. Empowerment of women innovators through capacity building, access to credit, and policy interventions is critical towards achieving sustainable and inclusive agricultural growth.

References

Behera, H. B., Ghosh, P., Koley, J., & Chakraborty, S. (2024). Rural marketing, self-help groups and women entrepreneurship in Birbhum district, West Bengal, India: A brief review. *decision-making*, 1(4), 6.

Kalra, R. K., Anil, B., Tonts, M., & Siddique, K. H. M. (2013). Self-help groups in Indian agriculture: A case study of farmer groups in Punjab, Northern India. *Agroecology and sustainable food systems*, 37(5), 509-530.

Raghunathan, K., Kannan, S., & Quisumbing, A. R. (2019). Can women's self-help groups improve access to information, decision-making, and agricultural practices? The Indian case. *Agricultural Economics*, 50(5), 567-580.

Rajan, C. R., & Xavier, M. J. (2015). Marketing innovation in partnership with self help groups: A

case study of a farm inputs manufacturer. *Indian Journal of Marketing*, 45(8), 7-17.

Shinogi, K. C., Jayashree, K. M., Varghese, E., Srivastava, S., Rashmi, I., Balakrishnan, R., & Gills, R. (2021). Empowerment of smallholder women farmers through self-help groups in south-west India. *Indian Journal of Extension Education*, 57(2), 31-37.

Agri-Entrepreneurship: Opportunities for Women in Rural Markets

¹Harshi Katiyar, ²Anil Kumar, ³Abhinash Moirangthem, ⁴Punabati Heisnam, ⁵Rita Fredericks

¹Ph.D Scholar, Department of Plant Pathology, Chandra Sekhar Azad University of Agriculture and Technology Kanpur

²Assistant Professor, School of Agriculture, Eklavya University Damoh, M.P.-470661

³Assistant Professor, Department of Horticulture, College of Agriculture, Central Agricultural University, Imphal, Manipur

⁴Assistant Professor, Department of Agronomy, College of Agriculture, Central Agricultural University, Imphal, Manipur

⁵CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Agri-entrepreneurship offers big opportunities to empower rural women by converting their conventional agriculture roles into profitable ventures. As there is growing demand for value-added products, organic production, food processing, and agri-services, women can become an active participant in rural markets and contribute to household incomes. Government schemes, self-help groups, microfinance, and online platforms provide important support in training, credit facility, and market linkages. In spite of the challenges of limited property ownership, financial constraints, and social beliefs, strategic interventions in skill improvement, policy assistance, and technological adoption have the potential to unleash the potential of women as agri-entrepreneurs, contributing towards inclusive growth and sustainable rural development.

2. Introduction

The rural economy of India is sustained by agriculture, providing livelihood for close to two-thirds of the rural population. Women are extremely important in food production, processing, and management of household nutrition in this industry. Though they contribute substantially to farming, women farmers are not visible in the entrepreneurial ecosystem as a result of inadequate access to information, resources, and markets.

Source: <https://www.business-standard.com/economy/news/agri-self-employment-propel-women-in-rural-india-finance-ministry>

3. Concept of Agri-Entrepreneurship

Agri-entrepreneurship is a new strategy that integrates agriculture with entrepreneurial competencies to bring revenues, jobs, and rural growth. It is the practice in which individuals or groups spot lucrative business opportunities in agriculture and allied areas, organize and utilize resources efficiently, and make thoughtful risks in

creating sustainable ventures. Agri-entrepreneurship is distinct from conventional subsistence farming practices as it targets innovation, value addition, and market orientation.

For women, agri-entrepreneurship widens their activity from farm-related endeavors into diversified businesses like food processing, addition of value to the produce of agriculture, and preparation of traditional and modern food items. Women may also venture into supply of inputs, custom-hiring centers for farm implements, seed production, nursery rearing, and allied activities such as dairy, poultry, and fisheries that provide steady income avenues. Besides, agribusiness services from marketing and logistics to digital e-commerce platforms give rural women exposure to bigger consumer markets.

The crux of agri-entrepreneurship is driving innovation, sustainability, and inclusion, thus connecting rural women to mainstream markets and making them economically empowered. By following this model, women can help in reinforcing rural economies while attaining empowerment, poverty reduction, and food security for themselves and their communities.

4. Rural Women's Opportunities in Agri-Markets

Rural women can leverage a range of agri-entrepreneurship opportunities that are harmonious with local skills, resources, and demand. Some of these opportunities include:

Source: <https://shetishala.com/agri-entrepreneurship-opportunities>

4.1 Food Processing and Value Addition

Food processing and value addition provide women entrepreneurs with lucrative opportunities through the conversion of farm produce into marketable products. Women can process pickles, papad, jams, jellies, chutneys, and ready-to-cook foods to address local and urban markets. With increased interest in millet-based and traditional food items among health-conscious consumers, branding and better packaging further boost product attractiveness with enhanced market value, generation of income, and economic empowerment of rural women.

4.2 Seed and Planting Material Production

Seed and planting material production is an essential agri-entrepreneurship venture for rural women. They can start certified seed production of cereals, pulses, and oilseeds to respond to increasing demand for quality seeds. Vegetable seedling nurseries help farmers obtain healthy ready-to-plant crops, while ornamental plants and medicinal herbs create niche markets. These businesses guarantee regular income, enhance the availability of seeds, and empower women as trusted suppliers in rural areas.

4.3 Livestock and Dairy Enterprises

Dairy and livestock business are sustainable rural livelihood opportunities for women using local resources. Women can operate milk collection, chilling, and small-scale processing units, providing value through products such as paneer, ghee, curd, and flavored milk. Goat keeping and backyard poultry are also low-cost, high-benefit activities. These businesses create income diversification, improve household nutrition, and solidify women's position as central players in rural dairy and livestock markets.

4.4 Organic Farming and Eco-Products

Organic farming provides rural women a chance to fulfill increased demand for chemical-free, safe

food. Growing organic vegetables, fruits, and grains guarantees high prices in speciality markets. Women may also create vermicompost, biofertilizers, and biopesticides to assist ecologically balanced farming. Moreover, green handicrafts and natural fiber items are attracting environmentally conscious consumers with increased amounts of multiple income sources while ensuring environmental sustainability and greening rural women entrepreneurs.

4.5 Agri-Service and Agri-Tourism Models

Agri-tourism and agri-services generate new income streams for rural women. Through custom-hiring centers of small machinery, advisory and input supply services, and farm-based tourism, women are able to earn supplementary income while promoting rural culture, assisting farmers, and connecting agriculture with education and experiential learning.

5. Enabling Factors for Women's Agri-Entrepreneurship

A number of enabling factors can assist women in the scaling up of entrepreneurial activities:

- Government Schemes: Schemes like NRLM (National Rural Livelihood Mission), Mahila Kisan Sashaktikaran Pariyojana, PMFME (Prime Minister's Formalisation of Micro Food Processing Enterprises), and Mudra Yojana.
- SHGs and Cooperatives: Women self-help groups (SHGs) generate collective strength, credit access, and bargaining power.
- Training and Skill Development: Krishi Vigyan Kendras (KVKs), ICAR institutes, and NGOs impart specialized training in food processing, value addition, and digital marketing.
- Digital Platforms: Online platforms and digital payment systems link women entrepreneurs to larger markets.

- Microfinance and Credit: NABARD, cooperative banks, and MFIs extend easy credit facilities for small enterprises.

6. Challenges Confronted by Women Entrepreneurs

Even though agri-entrepreneurship has tremendous potential, rural women still encounter a plethora of challenges that hinder their complete inclusion in entrepreneurial activities.

Limited ownership of land is among the most urgent concerns since the majority of rural women farm without legal titles to the land. This denies them access to institutional credit and government assistance programs. Therefore, women have to depend on informal sources of finance, usually with very high interest rates, and turn their business undertakings into risky and unsustainable activities.

Weak market linkages also present challenges, where rural women find it hard to access organized markets, thus reducing their capability to access good prices for their produce. Secondly, an immense technology gap is evident, where women lack adequate access to modern equipment, machinery, and ICT-based services that can improve productivity and competitiveness levels.

Deep-seated social customs and gender prejudice also limit the entrepreneurial opportunities for women, keeping them tied to domestic activities and preventing them from taking leadership positions. Even if women initiate businesses, their contribution goes unrecognized.

In addition, inadequate infrastructure, including a lack of storage facilities, processing plants, and transport facilities, holds back women entrepreneurs from expanding operations or reaching far-off markets.

7. Strategies for Strengthening Women Agri-Entrepreneurs

For enhancing women's agri-entrepreneurship, the following measures are necessary:

7.1 Capacity Building and Training

Capacity building is essential to empower women in agri-entrepreneurship. Practical training on food processing, packaging, branding, and quality standards enables them with enterprise growth skills. Moreover, ICT-based training through mobile apps, e-learning platforms, and videos improves knowledge, increases outreach, and enables women to adopt innovative practices for sustainable rural businesses.

7.2 Financial Inclusion

Financial inclusion is required to further enhance women's position in agri-entrepreneurship. Customized credit products for women entrepreneurs make capital more accessible. Financial security increases through connections of women with cooperative banks and SHG federations, while grants and subsidies to women start-ups promote entrepreneurship, decrease reliance on informal financiers, and encourage sustainable enterprise growth in rural markets.

7.3 Market Linkages and Branding

Strengthening market linkages and branding facilitates rural women's access to profitable markets. Rural haats, women-owned FPOs, and cooperative marketing increase collective bargaining. Building distinctive rural brand identities like "Made by Rural Women" raises visibility, while online platforms such as Amazon Karigar, Flipkart Samarth, and GeM provide women entrepreneurs with broader consumer bases.

7.4 Policy and Institutional Support

Institutional and policy support is key to promoting women's agri-entrepreneurship. Policies that are gender-responsive, providing land rights and entrepreneurial opportunities, empower women to gain access to resources. Promoting their involvement in FPO boards and agribusiness cooperatives enhances leadership. Linking with rural development schemes provides sustainability,

allowing women-led enterprises to compete favourably with conducive institutional and policy environments.

7.5 Technology and Innovation

Innovation and technology are important to improve women's productivity in agri-entrepreneurship. Encouraging women-friendly farm equipment decreases drudgery and enhances productivity. Solar dryers, affordable processing machines, and packaging units enhance the value of farm produce. ICT tools for price data, online marketing, and networking increase market access and enable women as competitive rural entrepreneurs.

8. Success Stories

Success stories based on real-life experiences bring out the magic of women-led agri-entrepreneurship in rural markets.

The well-known Lijjat Papad initiative in Maharashtra started as a small self-help group (SHG) in which women made papads at home. Over the years, it grew to be a national brand with thousands of rural women employed. Not only did this business offer stable incomes, but it also showed how efforts at the grassroots level, branding, and market linkages can translate large-scale rural businesses.

The Amul Women Dairy Cooperatives in Gujarat demonstrate how women's involvement in milk production and marketing transformed family incomes. Through the organization of women in cooperatives, Amul was able to give them autonomy to directly contribute to value addition, quality, and marketing, hence transforming rural dairy economies.

Also, in Karnataka and Telangana, millet entrepreneur groups are capturing urban markets by making cookies, snacks, and ready-to-cook items. With increasing demand for millet, healthy, and traditional food, these women entrepreneurs have

been able to capture niche markets without losing sight of indigenous food culture.

These examples amply illustrate that with appropriate support training, finance, technology, and market access rural women can escalate agri-based enterprises, gain economic autonomy, and help enormously in sustainable rural development.

9. Conclusion

Agri-entrepreneurship can help rural women break the shackles of being unpaid workers and emerge as legitimate entrepreneurs and leaders of farm value chains. Through government schemes, SHG networking, training, digital platforms, and innovative business models, women can engage proactively in sustainable rural development. Empowering women's presence in agri-entrepreneurship is not only an economic imperative but also about developing inclusive, robust, and sustainable rural markets. When women are successful as agri-entrepreneurs, the positive effects cascade through households, communities, and generations to come.

10. References

Chahal, V. P., & Ponnusamy, K. (2014). Study on gender issues in promoting agri-entrepreneurship

among farm graduates. *Indian Journal of Agricultural Sciences*, 84(6), 684-90.

Das, S., & Darshan, N. P. (2025). Building a Gender-Inclusive Agri-ecosystem: An Enabling Environment for Women Agripreneurs. *Journal of Community Mobilization and Sustainable Development*, 20(3), 882-887.

Kumar, P. (2017). Agro-Industry, Agricultural Marketing, Entrepreneurship, Agri-Business, Trade and Innovations. *Indian Journal of Agricultural Economics*, 72(1), 76-80.

Sandhu, N., Hussain, J., & Matlay, H. (2025). Can entrepreneurship education and training assist women entrepreneurs to make agritourism a success story in India?. *Journal of Small Business and Enterprise Development*.

Singh, S., Rana, A., Sharma, N., & Kumar, M. (2022). A review on women agri-entrepreneurship: roles and opportunities in agriculture for sustainable growth in India. *Humanities*, 10(2), 56-67.

Empowering Women Farmers through Skill Development Programs

¹Dr. E. Shirin Hima Bindu*, ²Dr. Dileep Kumar Gupta, ³Dr Khan Chand, ⁴Harshi Katiyar, ⁵Dr. Anil Kumar

¹Assistant Professor, College of Community Science, Hyderabad, PJTAU

²Teaching Assistant, Deptt. of Agricultural Extension, Institute of Agricultural Sciences, Bundelkhand University, Jhansi (U.P.)

³Professor, Department of Agricultural Engineering, School of Agricultural Sciences, Nagaland University, Medziphema Campus, Distt: Chumukedima, Nagaland

⁴Ph.D Scholar, Department of Plant Pathology, Chandra Sekhar Azad University of Agriculture and Technology Kanpur

⁵Assistant Professor, School of Agriculture, Eklavya University Damoh, M.P

Women farmers are important drivers of agricultural development and food security, but they are confronted with challenges including restricted access to resources, training, and decision-making. Capacity development programs offer a viable route towards empowering women through increased knowledge, technical skills, and entrepreneurial skills. Training women in new agriculture skills, post-harvest handling, value addition, and ICT skills equips them with confidence, raises productivity, and expands sources of income. Blending these schemes with government programs, SHGs, and Farmer Producer Organizations makes them sustainable. Skill development empowering women not just enhances livelihood but also economizes rural development and fosters gender mainstreamed agricultural development.

2. Introduction

Women form the core of Indian agriculture, providing almost 60–70% of farm, livestock, and allied sector labor. Nevertheless, their contribution goes unrecognized because of no training, skill development, and appreciation. The majority of women farmers rely on local knowledge, with very poor access to modern technology, extension, and support for entrepreneurship. Women's technical, managerial, and entrepreneurial skills can be addressed through skill development programs that can fill this gap. Well-planned training programs not only enhance farm productivity but also enhance socio-economic empowerment, allowing women to emerge as rural development leaders. This bulletin underscores the necessity, ingredients, and influence of skill development programs for women farmers, with strategies and success stories.

3. Women in Agriculture: Current Status and Challenges

3.1 Current Status

Women constitute the backbone of Indian agriculture and make an important contribution at various stages of the farm cycle. From planting, transplanting, and weeding to reaping, threshing, and post-harvest handling, women's contribution cannot be avoided. They are also directly engaged in allied activities like milk farming, poultry, goat breeding, mushroom farming, and small-scale agro-enterprises, which add diversity to household income and provide food and nutrition security. Apart from production, women have traditionally been the key actors in seed selection, storage, and preservation, thus ensuring genetic diversity and agro-biodiversity conservation. Their role includes food processing and value addition that increase household income and local economies. Though playing this pivotal role, women farmers are often defined as "helpers" instead of being seen as primary farmers, which makes them invisible in agricultural statistics and policy-making.

3.2 Principal Challenges

- Limited access to education and technical training.
- Low involvement in extension and capacity building programs.
- No ownership of land and farm assets.
- Limited access to credit, inputs, and technologies.
- Dual responsibility burden (farm + household) is high.
- Women's contributions are not visible or well-recognized.

4. Role of Skill Development Programs in Women Empowerment

Skill development programs serve as a pillar of women empowerment in agriculture and rural development. These programs provide focused training, enable women farmers to upgrade their knowledge, embrace new technologies, and become productive stakeholders in household and community well-being. They enhance agricultural productivity and create new livelihood opportunities and thus reduce poverty and provide food security.

Capacity-building programs enhance women's technical skills in crop production, soil fertility management, irrigation efficiency, and utilization of improved machinery. This alleviates drudgery, improves productivity, and makes agriculture more sustainable.

Source: <https://www.linkedin.com/pulse/empowering-women-through-skill-development-path-growth-rajput-dgrgc>

Entrepreneurship Development

Agri-business training, value addition, and food processing equip women with capacity to transition from subsistence farming and venture into market-led businesses. Packaging, branding, and marketing skills unlock opportunities for increased income generation and autonomy.

Livelihood Diversification

Through structured training in allied sectors—such as dairy farming, goat rearing, poultry, mushroom cultivation, beekeeping, tailoring, and handicrafts—skill development programs provide women with alternative sources of income. This reduces vulnerability to agricultural risks and improves household resilience.

Digital Literacy

Under the age of digital agriculture, educating women in mobile applications, ICT tools, and digital finances promotes financial inclusion. It also creates access to online markets, government programs, weather updates, and advisory services.

Leadership Skills

Empowerment through skill development equips women to assume leadership positions within Farmer Producer Organizations (FPOs), cooperatives, and village councils. This engagement strengthens their decision-making powers and bargaining ability, opening doors for gender parity in agriculture.

5. Categories of Skill Development Program for Women Farmers

Skill development programs for women farmers aim to improve their technical, entrepreneurial, and digital skills. These programs touch upon many different areas in order to make women more productive, assertive, and independent in agriculture and allied industries.

5.1 On-Farm Skills

On-farm skill training improves women's technical capacity in main crop production. It encompasses better sowing and weeding skills to promote better establishment of crops and less drudgery. Integrated nutrient and pest management practices enable women to adopt environmentally friendly methods while minimizing input costs. Skill training in effective irrigation and water harvesting ensures improved water-use efficiency in rainfed and irrigated conditions. Post-harvest handling, grading, and storage skills reduce losses and improve profitability.

5.2 Off-Farm and Allied Skills

Allied sector contributions to household income are dominated by women. Training in dairy production, poultry, and goat rearing provides women with sustainable livelihoods. Advanced courses in mushroom cultivation, sericulture, and horticulture (vegetables and fruits) provide diversification of income sources. Organic and natural farming provides women farmers with sustainable agriculture as well as the increased market for chemical-free products.

5.3 Agri-Entrepreneurship Skills

Women are encouraged to be agri-entrepreneurs by skill development programs. Training in food value addition and processing—like preparing pickles, jam, papad, or flour milling—results in marketable products. Additional training in packaging, branding, and marketing enables women to set up micro-enterprises. Financial literacy and business planning make it possible for women to manage enterprises and expand them in a sustainable way.

5.4 Digital and Managerial Skills

With digitalization revolutionizing agriculture, women farmers are equipped with skills in the use of mobile apps for weather information, price signals, and advisory inputs. E-marketing platforms like e-NAM provide new market linkages. Digital

payments and mobile banking support financial inclusion, while training in record-keeping and cooperative management for building organizational and leadership competencies.

6. Institutional Support for Skill Development

Women farmers need systematised training and ongoing handholding to improve their knowledge, skills, and confidence. A number of national and state institutions and grassroots organisations have taken the initiative to promote women-centric skill development activities. These institutions give training, finances, and market connections to empower them totally.

ICAR & Krishi Vigyan Kendras (KVKs):

ICAR, through its chain of KVKs, has farm-based skill development programs like integrated nutrient management, soil health enhancement, crop diversification, and drudgery-reducing technologies. These are locus-specific trainings that focus on enhancing farm productivity and sustainability.

NABARD & National Rural Livelihoods Mission (NRLM):

NABARD is the driving force behind the promotion of Self-Help Groups (SHGs) and extension of financial literacy initiatives. NRLM empowers women's collectives by way of entrepreneurship development, livelihood diversification, and exposure visits. In combination, they build robust institutional platforms for rural women.

DAY-NULM & Pradhan Mantri Kaushal Vikas Yojana (PMKVY):

These government flagship programs are aimed at non-farm skill development, with vocational and livelihood training for women in food processing, handicrafts, tailoring, and service lines.

NGOs and Cooperatives

Non-governmental organizations and cooperatives offer training at the grassroots level in organic farming, mushroom production, dairy, poultry, and

market access. They also serve as intermediaries between women farmers and more central institutions.

Universities & Training Institutes:

Polytechnics, rural training centers, and agricultural universities offer specialized training in agribusiness, value addition, and allied sectors, enabling women to venture into entrepreneurship.

7. Impact of Skill Development Programs

Skill development schemes have made a paradigm shift in the lives of women farmers by developing their technical skills, economic opportunities, and social status. These schemes empower women not only as farm labor but as entrepreneurs, decision-makers, and rural community leaders. The effects fall under the categories of economic, social, and political.

Economic Impact

Skill development has a direct bearing on increased farm productivity through the introduction of new cultivation techniques, integrated crop management, and post-harvest technologies. Trained women can diversify into allied activities like dairy farming, poultry, rearing of goats, and mushroom cultivation, which generate alternative incomes. After value addition, packaging, and branding training, women farmers get improved access to markets and receive higher returns. Financial literacy and entrepreneurial skills also help them manage small agribusinesses efficiently.

Social Impact

Apart from economics, skill development raises the self-esteem and confidence of women. Training programs make them more participative in decision-making in households and institutions in the community. The use of better tools and techniques minimizes drudgery, and farming activities become less burdensome. Women have a greater influence in Self-Help Groups (SHGs), cooperatives, and producer organizations, bringing community action

and peer learning. Recognition of their role raises their social status and increases the involvement of younger women in farm activities.

Political Influence

Enfranchised women increasingly play active roles in rural governance and village decision-making. Developing skills helps to build leadership competencies, and women are able to advocate their own interests in Farmer Producer Organizations (FPOs), cooperatives, and panchayat institutions. Political representation in this way guarantees that the voices of women ring out in agricultural policies, credit policies, and rural livelihood policies.

8. Challenges in Skill Development for Women Farmers

Even as the significance of skill development programs increases, women farmers still have several challenges that hinder their access and advantage to full participation. One significant challenge is low literacy rates, which confine them to accessing technical training, digital technologies, and money management techniques. Mobility constraints as well as societal culture inhibit women from participating in training courses, exposure visits, or market connections. Even if trained, women fail to initiate businesses because they have limited credit access and no collateral. Moreover, most training programs are plagued by poor trainers, poor infrastructure, and the lack of women-focused modules that cover their special needs like drudgery reduction. The next important barrier is the poor market link for products made by trained women entrepreneurs that diminishes income prospects and disheartens long-term participation. Strengthening these capacities by targeted policies and inclusive strategies is critical to empowering women farmers more effectively.

9. Strategies to Improve Skill Development Programs

1. Customized Training Modules: Women-sensitive, functional, and localized training.

- 2. ICT Tools Utilization:** Mobile advisories, e-learning, and digital applications.
- 3. Market-Focused Approach:** Connecting training with value chains and market demands.
- 4. Trainer Capacity Building:** Gender-focused extension workers for women farmers.
- 5. Integration of Schemes:** Alignment with NRLM, PMKVY, and state missions.
- 6. Entrepreneurship Ecosystem:** Women's credit, subsidies, and incubation centers.

10. Conclusion

Skill development programs play a key role in shaping women farmers into empowered leaders and entrepreneurs. By providing them with technical skills, financial literacy, and digital skills, these programs decrease gender gaps in agriculture. The combining of training with institutional support, market links, and policy interventions provides the assurance that women are not only farm workers but also decision-makers, innovators, and entrepreneurs. Asking women farmers to empower themselves through skill development is not only an issue of gender equality but also a major driver of sustainable agricultural development and rural transformation.

11. References

Ahamad, T., Sinha, A., & Shastri, R. K. (2016). Women empowerment through skills development & vocational education. *SMS Journal of Entrepreneurship & Innovation*, 2(2), 76-81.

Collett, K., & Gale, C. (2009). Training for rural development: Agricultural and enterprise skills for women smallholders. *City and Guilds Centre for Skills Development*, 24-30.

Sekaryahya, P. F., & Nadeak, B. (2024). Strategies For Empowering Women Farm Workers To Increase Income Through Weed Processing Training. *Jurnal Sosial Humaniora*, 15(2), 156-170.

Shuai, Y., Shuai, C. M., Li, W. J., & Huang, F. B. (2019). Role of women's empowerment in improving farmer's livelihood: Empirical evidence from China. *Quality & Quantity*, 53(2), 621-639.

Vyas, A. (2018). The impact of skill development on women empowerment. *International Journal for Advance Research and Development*.

Women Empowerment in Agriculture: Self-Help Groups and Microfinance

Rita Fredericks

CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Women are important agents in agriculture but have limitations including land ownership, lack of access to credit, and limited decision-making opportunities. Self-Help Groups (SHGs) and microfinance have been catalytic tools to bridge these gaps. By organizing women into groups, SHGs promote saving, offer collateral-free credit, and stimulate entrepreneurship. Microfinance increases access to financial services, facilitating investment in farm productivity, allied activities, and income diversification. Combined, SHGs and microfinance enhance economic resilience as well as social and political empowerment, rendering women active stakeholders in sustainable agriculture development and rural change.

2. Introduction

Indian agriculture involves approximately 60–70% of rural women, but their effort generally goes underappreciated because they do not have land ownership, have limited access to credit, technology, and extension services. Women are often subjected to financial exclusion, which limits their ability to invest in farm productivity, implement innovations, or join decision-making. Self-Help Groups (SHGs) and Microfinance Institutions (MFIs) have emerged as enabling instruments for socio-economic empowerment to counter such issues. Collectively, they ensure rural women have access to financial services, solidarity power, skill acquisition, and increased bargaining capacity. This bulletin points out the role of SHGs and microfinance in promoting empowered women farmers, enhanced livelihoods, and sustainable agricultural development.

3. Women in Agriculture: Challenges and Opportunities

Indian agriculture is sustained by women, who provide a major contribution to crops, animal husbandry, food processing, and nutrition management in households. Their contribution goes unrecognized because of socio-economic and cultural obstacles. It is important to comprehend the challenges as well as opportunities of women farmers while formulating inclusive and sustainable agricultural policies.

3.1 Challenges Faced by Women Farmers

Women in farming face a number of constraints that curtail their productivity and empowerment. One of the key constraints is restricted ownership of assets and land, where fewer than 13% of women own land titles, limiting access to institutional credit and decision-making authority. Since they lack collateral, most women rely on high-interest moneylenders. Gender discrimination in training, extension, and input delivery tends to exclude women from new technologies and innovations. Moreover, women have a labor-intensive workload, combining farming with domestic duties, resulting in physical exhaustion and time poverty. Moreover, their weak participation in decision-making at the household and community levels limits their control over agricultural policies and resource allocation.

Source: <https://www.manoramayearbook.in/india>

3.2 Opportunities

There are excellent opportunities to empower women in agriculture despite these challenges. Women have showcased their efficacy in farm management and micro-enterprises, especially in poultry, dairying, and food processing. Government programs are giving more importance to women-led Self-Help Groups (SHGs), and training, entrepreneurship facilities, and financial assistance are being provided. With the growth of digital financial services, rural women enjoy improved access to banking, savings, and credit facilities. Additionally, the market for women-oriented agri-products like organic crops, handicrafts, and processed products is growing fast, opening new avenues of income and empowerment.

4. Self-Help Groups (SHGs) in Women Empowerment

4.1 What are SHGs?

Self-Help Groups (SHGs) are small, informal groups typically made up of 10–20 women from the same socio-economic class who come voluntarily to solve their common issues through supportive relationships. They are ground-level organizations where members save every month, collect and pool their resources, and lend to each other at minimal interest rates. By pooling their efforts together, SHGs not only facilitate financial inclusion but also become a platform for skill upgradation, social engagement, and empowerment of rural women.

Source: <https://www.iasexpress.net/self-help-groups-shgs>

4.2 Main Roles of SHGs

The role of SHGs goes beyond savings and credit. Their main roles are:

- Savings and Credit: Inculcating thrift and extending collateral-free credit to members for farm and household purposes.
- Capacity Building: Providing training on agriculture, entrepreneurship, leadership, and financial literacy, thus developing the capabilities of women and building their confidence.
- Social Empowerment: Weakening dependence on moneylenders and male relatives, enhancing decision-making capacity, and creating group solidarity.
- Collective Action: As a pressure group to negotiate inputs, access entitlements from government programs, and market produce in groups to negotiate fair prices.

4.3 Role in Agriculture

SHGs have been instrumental in changing the role of women in agriculture. In collective action, women buy good quality seeds, fertilizers, and farm tools at reduced prices, hence improving access to better inputs. Group learning allows members to embrace new agricultural practices and technology, hence raising farm productivity. The majority of SHGs advocate for organic farming and sustainable agriculture practices, which promote environmental conservation. In addition, SHGs have effectively developed community-based businesses, including dairy farming, poultry, mushroom growing, and food processing, which not only generate extra income but also rural employment.

By linking women into formal credit systems and providing them with entrepreneurial and managerial skills, SHGs serve as effective tools of women empowerment, enabling economic self-sufficiency as well as social change in rural communities.

5. Microfinance: A Driver for Women Empowerment

5.1 What is Microfinance?

Microfinance refers to the provision of small-scale financial products—loans, savings, insurance, and remittances—to low-income households, especially those who are outside the formal banking system. In contrast to conventional credit, microfinance is unsecured, rendering it particularly convenient for women farmers in rural areas who usually do not own land or other assets. In addition to credit, microfinance ensures financial literacy, risk management, and long-term economic stability. For agricultural women, it provides the building blocks to invest in farm enterprises, minimize financial vulnerability, and eventually become self-sufficient.

5.2 Benefits for Women in Agriculture

Microfinance has become a crucial tool to increase women's involvement in agriculture and allied sectors. Microcredit helps women access credit easily for buying seeds, fertilizers, irrigation equipment, and livestock. These finances help them diversify their livelihood activities into income-generating ventures like dairying, goat rearing, mushroom cultivation, and handicrafts. Through the provision of low-interest loans, microfinance mitigates women's reliance on moneylenders, who charge exorbitant rates from unsuspecting borrowers. In addition, microfinance propels women into entrepreneurship, setting up small agri-enterprises, and collective marketing. Timely access to credit enables women to lower risks, enhance productivity, and increase household food security.

5.3 Institutions Involved

There are institutions that played a crucial role in empowering microfinance for women in agriculture. The Self-Help Group–Bank Linkage Programme (SHG-BLP), initiated by NABARD, has been a landmark program connecting thousands of women's SHGs to formal banks. Leading Microfinance Institutions (MFIs) like SEWA, SKS

Microfinance, and Bandhan offer credit, training, and insurance services specific to rural women. NGOs and Cooperatives also play a vital part in mobilizing women, financial literacy, and entrepreneurial development. Collectively, these organizations form an enabling environment through which rural women farmers are able to access inputs, enhance livelihoods, and progress towards socio-economic empowerment.

6. Impact of SHGs and Microfinance on Women Empowerment

Self-Help Groups (SHGs) and microfinance have triggered multi-dimensional empowerment of rural women through their strengthening of economic, social, and political roles. Their impact extends beyond financial inclusion, generating sustainable avenues for enhanced livelihoods, confidence-building, and leadership.

Economic Impact

Access to microfinance and SHGs has greatly enhanced women's economic independence. Through mutual pooling of savings and access to collateral-free credit, women acquire the means to invest in agriculture, livestock, and small businesses. This increases farm productivity and household incomes as women can buy quality inputs and engage in improved farming methods. Most women have diversified into related activities like dairy, poultry, mushroom farming, and food processing, ending reliance on seasonal agriculture and guaranteeing a twelve-month income.

Social Impact

Involvement in SHGs builds solidarity, increasing women's decision-making capacity within households and communities. Women are no longer monopoly-dependent on moneylenders, minimizing financial risk. Collective bargaining by SHGs earns them higher prices for farm produce and inputs, and agriculture becomes more profitable. Social networks established within SHGs also promote

mutual learning, problem-solving, and building confidence, eventually transforming gender roles.

Political Impact

SHGs and microfinance programs have also empowered women to engage actively in village administration and local institutions. SHGs have brought forth several women leaders, who have added vibrancy to grassroots democracy. Greater representation of women in Farmer Producer Organizations (FPOs) and cooperatives ensures their voices are heard in agriculture policy-making and value-chain management.

7. Challenges in SHGs and Microfinance

Though Self-Help Groups (SHGs) and microfinance have proved to be effective means of empowering women farmers, they are not challenge-free. Various constraints limit their long-term success and sustainability.

- One of the most prominent issues is the excessive reliance on external facilitators like NGOs, government departments, or banks. Most SHGs are not self-sufficient and fail to operate efficiently without constant external assistance. The other serious issue is over-indebtedness since some women take multiple loans from various sources without adequate financial planning, resulting in repayment problems.
- A major handicap is the poor financial literacy of rural women, which handicaps their capacity for saving, credit, and investment management in an optimal manner. In the absence of adequate knowledge, funds at times leak to consumption instead of productive uses. In addition, SHGs experience marketing as well as value-chain integration gaps, which restrict their capacity to sell products at remunerative prices. Deterioration of storage, processing, branding, and direct market access diminishes profitability.

➤ Lastly, sustainability concerns are an issue. Most SHGs fall apart when external assistance is withdrawn, while the importance of capacity development, leadership training, and institutional links is underscored. Unless these are overcome, the potential of SHGs and microfinance to transform women's empowerment in agriculture could be lost.

8. Strategies for Strengthening Women Empowerment

For microfinance and SHGs to realize their full potential in empowering women in agriculture, a multi-pronged strategy is necessary. Institutional strengthening as well as individual capacity building will provide sustainability and inclusiveness over the long term.

1. Capacity Building:

Regular training in financial literacy, entrepreneurship, and new agricultural technologies empowers women with the capabilities to manage credit, diversify income streams, and embrace new technologies. Leadership development programs can further increase their roles in decision-making at household and community levels.

2. Technology Adoption:

Digital solutions can lower the barriers of financial transactions. Facilitating digital payments, mobile banking, and e-marketing platforms allows women to get access to formal credit, save safely, and market their products directly, avoiding intermediaries.

3. Market Linkages:

Enhancing links between SHGs and Farmer Producer Organizations (FPOs), cooperatives, and e-NAM (National Agricultural Market) ensures that the produce of women fetches improved prices. Collective branding, packaging, and certification may improve competitiveness in larger markets.

4. Policy Support

Developing and enforcing gender-sensitive policies are essential in order to ensure women's land rights, equitable access to credit, and government scheme priority. These policies have the ability to rectify structural imbalances and enhance women's ownership of agriculture.

5. Integration with Government Schemes:

Connecting SHGs with schemes such as NRLM, DAY-NULM, and PMFME enhances the support of institutions alongside financial and technical support. Women-focused schemes can be designed to induce innovation, value addition, and entrepreneurship.

9. Recommendations

- Enhance SHG-bank linkage schemes with ease of operations.
- Establish women-focused agri-business clusters.
- Offer incentives and subsidies for SHG-driven enterprises.
- Augment women's presence in extension services and cooperatives.
- Foster research and documentation of successful SHG and microfinance schemes.

10. Conclusion

Self-Help Groups and microfinance have revolutionized the lives of rural women, providing them with economic independence, social status, and entrepreneurial capability. Through facilitating collective power and access to assets, these models close the gender gap in agriculture and rural

development. For long-term sustainability, women need to be included in value chains, empowered with digital technologies, and recognized as equal partners in agricultural transformation.

References

Anjugam, M., & Ramasamy, C. (2007). Determinants of women's participation in self-help group (shg)-led microfinance programme in Tamil Nadu. *Agricultural Economics Research Review*, 20(2), 283-298.

Anjugam, M., Ramasamy, C., & Balasubramanian, R. (2007). Impact of microfinance programme in empowering women: Evidences from Self-Help Groups (SHGs) in Tamil Nadu.

Madheswaran, S., & Dharmadhikary, A. (2001). Empowering rural women through self-help groups: Lessons from maharashtra rural credit project. *Indian Journal of Agricultural Economics*, 56(3), 427-443.

Mohapatra, S., & Sahoo, B. K. (2016). Determinants of participation in self-help-groups (SHG) and its impact on women empowerment. *Indian Growth and Development Review*, 9(1), 53-78.

SWAIN81, R. B. (2007). Can microfinance empower women? Self-help groups in India. *Microfinance and Gender: New Contributions to an Old Issue*, 1(1), 6.

Encouraging Women's Participation in Agricultural Research and Innovation

¹Dr. Dileep Kumar Gupta*, ²Dr. E. Shirin Hima Bindu, ³Dr. Anil Kumar

¹Teaching Assistant, Deptt. of Agricultural Extension, Institute of Agricultural Sciences, Bundelkhand University, Jhansi (U.P.)

²Assistant Professor, College of Community Science, Hyderabad, PJTAU

³Assistant Professor, School of Agriculture, Eklavya University Damoh, M.P

Women are key players in agriculture, but their involvement in research and innovation is constrained by socio-cultural, institutional, and resource-based challenges. Facilitating women's engagement in agricultural research broadens inclusivity, productivity, and sustainability as well as responds to grassroots-based issues like reduction of drudgery, food security, and climate resilience. This bulletin underscores the significance of women's participation, existing gaps, and strategies such as education, mentorship, institutional reforms, and women-friendly technologies. Case studies and policy actions provide evidence of best practices in empowering women scientists and innovators. Facilitating gender-responsive agricultural research is critical for equitable growth and sustainable development within the agriculture industry.

2. Introduction

Agriculture is the cornerstone of food security and rural livelihoods globally. Women make large contributions to agricultural production, post-harvest handling, and natural resource management. Even though they play such crucial roles, women are underrepresented in agricultural research and innovation systems, especially in leadership, decision-making, and access to technology. It is crucial to encourage women's involvement in research and innovation not only for gender balance but also for improving productivity, sustainability, and resilience of farming systems.

3. Significance of Women in Farming Research and Innovation

- Bringing Different Perspectives: Women tend to introduce distinct perspectives on farming practices, crop choice, food preparation, and family nutrition. Their inclusion guarantees that innovations reflect real challenges encountered at the local level.
- Farmer-Centered Technology Development: Women's participation guarantees that technologies are made to save time, decrease

drudgery, and meet female farmers' socio-cultural context.

- Food Security and Nutrition: Women researchers and innovators tend to focus on crops and practices enhancing household nutrition, seed diversity, and climate resilience.
- Sustainability: Women have major roles in conserving resources, water management, and agroecology. Their involvement ensures that sustainability objectives are embedded.

4. Current Status and Challenges

Source: <https://www.strategy-business.com/blog/As-India-advances-womens-workforce-participation-plummets>

4.1 Representation in Research Institutions

Women are still underrepresented in research institutions in agriculture, with a much lower proportion than men, especially in top leadership and decision-making positions. While their numbers have improved over time, women researchers continue to be found in support disciplines like social sciences, home science, and extension, which are viewed as auxiliary but not core research disciplines. Their numbers in significant disciplines such as agronomy, agricultural engineering, biotechnology, and farm mechanization are low. This lack of balance not only limits the extent to which women contribute to agricultural innovation but also depletes the range of thinking needed to produce comprehensive, inclusive, and sustainable research results.

4.2 Obstacles

1. Socio-cultural obstacles – Women's mobility and enrollment in training or research initiatives are limited by gender roles.
2. Restricted access to training and education – Fewer women seek higher education in agricultural sciences, constricting the pipeline for researchers.
3. Work-life balance constraints – Family commitments usually restrict women's availability for fieldwork, travel, or overseas collaboration.
4. Absence of mentorship and networks – Women researchers seldom have role models and professional mentorship opportunities.
5. Institutional biases – Male-dominated research organizations can ignore women's inputs in project conceptualization, funding, and appreciation.

5. Policy and Institutional Frameworks

5.1 Global Initiatives

A number of global frameworks highlight the need for women's engagement in agricultural research and innovation. FAO's Gender Equality Strategy champions women's empowerment by incorporating

gender-responsive strategies in agricultural research, extension, and rural development initiatives. CGIAR Gender Platform aims to mainstream gender insights in agricultural innovation systems so that research outputs are equitable, inclusive, and responsive to women farmers' and scientists' needs. Also, UN Sustainable Development Goal 5 (Gender Equality) underlines the urgency of equal opportunity in education, research, and technology to minimize the gap and enhance women's contribution to agricultural change worldwide.

5.2 National Policies (India Example)

India has established a number of policies aimed at enhancing women's contribution to agricultural research and innovation. The National Policy for Women in Agriculture (2007) recognizes the role of women as stakeholders and focuses on women's integration into mainstream programs. The ICAR Gender Perspective Plan is designed to improve the capacity-building, participation, and inclusion of women in agricultural education, research, and extension work. The Women Component Plan (WCP) also requires that 30% benefits and funds in agricultural projects be allocated to women to ensure gender-sensitive resource allocation. Together, these policies are meant to empower women and close gender gaps in agricultural development.

6. Strategies to Encourage Women's Participation

6.1 Education and Capacity Building

Increased participation of women in agricultural research calls for focused interventions in education and skill improvement. Encouragement of girls to study in agricultural universities by offering them scholarships, fellowships, and reserved seats can enhance the number of participants in science subjects. A gender-insensitive curriculum where women's concerns are incorporated in research and extension activities ensures that future professionals are more sensitive to gender requirements. In addition, specialized training courses, workshops,

and research fellowships for women scientists improve their technical expertise, leadership, and innovation potential. Developing such inclusive learning opportunities not only strengthens women researchers but also diversifies agricultural science with varied viewpoints for sustainable growth.

6.2 Institutional Reforms

Encouraging participation by women in agricultural research demands institutional reforms to provide an environment that enables them. The creation of gender cells in research institutions can assist in mainstreaming gender issues in project design, implementation, and assessment. Gender balance in hiring, promotion, and senior leadership is essential for achieving balanced representation in decision-making positions. Also, extending flexible working conditions, maternity leave, and childcare services assists women scientists in reconciling professional and family obligations. These reforms not only give power to women researchers but also enhance innovation systems by building inclusivity, eliminating barriers, and making research results benefit men and women equally.

6.3 Access to Finance and Innovation Platforms

Women-led innovation funds can also invest in startups and agri-enterprises, allowing for increased involvement in research and entrepreneurship. Empowering women's inclusion in incubators, accelerators, and technology parks increases exposure to new innovations. Further, incorporating women-friendly IPR policies ensures protection of indigenous knowledge and innovations, allowing women innovators to effectively input into agricultural research and technology development.

6.4 Building Networks and Mentorship

Mentorship schemes that connect young woman scientists with experienced researchers can build capacity and confidence. Facilitating women's participation in societies, expos, and conferences improves visibility and cooperation. Fostering women-run FPOs and SHGs for research trials

enhances grassroots outreach, making innovations contextual, participatory, and adopted at scale, while forging supportive professional networks for women in agriculture.

6.5 Technology for Women Farmers

The design of women-friendly machinery and tools decreases drudgery in sowing, weeding, harvesting, and processing. ICT platforms such as mobile apps and digital advisory services increase access for low-literacy women. Encouraging participatory research in which women take part in varietal trials, seed selection, and technology assessment makes innovations functional, site-specific, and adoptable on a large scale, empowering women in farm decision-making.

7. Case Studies and Best Practices

7.1 Self-Employed Women's Association (SEWA), India

SEWA has engaged women in participatory research, particularly in seed choice and water management, with increased adoption levels of technology.

7.2 African Women in Agricultural Research and Development (AWARD)

Offers mentoring, fellowships, and leadership development to African women scientists, enhancing their numbers and contributions in agricultural research.

7.3 ICAR Women Scientists Scheme

Motivates women scientists to undertake independent projects, especially following career interruptions, for retaining female talent in research.

8. Extension Services' Role

Extension services play a key role in bridging the divide between women farmers and agricultural research. Conducting women-specific field demonstrations and exposure visits enables women to directly interact with new technologies and practices. Employing community radio, women-

focused ICT platforms, and local women's groups ensures that even those with low literacy or mobility are reached. Training gender-sensitive extension agents prepares them to appreciate the special challenges, requirements, and viewpoints of women. Through integrating focused outreach, participatory education, and inclusive communication methods, extension services can greatly increase women's access to innovations, enhance adoption, and consolidate their position in agricultural research and decision-making.

9. Recommendations

1. Enhance gender mainstreaming in agricultural universities and research institutions.
2. Support women-owned start-ups and agri-innovation centers with separate funding.
3. Facilitate public-private partnerships in favor of women innovators.
4. Provide recognition and visibility of women's achievements in awards, publications, and leadership roles.
5. Utilize ICT and digital platforms for distance education, online mentorship, and joint research.
6. Create women-friendly mechanization equipment for small-scale agriculture.

10. Conclusion

Active engagement of women in agricultural research and innovation is not merely a social justice issue but also an essential catalyst for sustainable agriculture. By dismantling institutional barriers, offering education and leadership opportunities, and developing gender-responsive innovations, agricultural systems can unlock the potential of women. Empowering women researchers,

innovators, and farmers will drive the advancement of food security, climate resilience, and rural development inclusivity.

11. References

Benítez, B., Nelson, E., Romero Sarduy, M. I., Ortiz Pérez, R., Crespo Morales, A., Casanova Rodríguez, C., ... & Daniels, J. (2020). Empowering women and building sustainable food systems: A case study of cuba's local agricultural Innovation Project. *Frontiers in Sustainable Food Systems*, 4, 554414.

Chebet, N. (2023). The role of women on agricultural sector growth. *International Journal of Agriculture*, 8(1), 41-50.

Kingiri, A. N. (2013). A review of innovation systems framework as a tool for gendering agricultural innovations: exploring gender learning and system empowerment. *The Journal of Agricultural Education and Extension*, 19(5), 521-541.

Mulema, A. A., Jogo, W., Damtew, E., Mekonnen, K., & Thorne, P. (2019). Women farmers' participation in the agricultural research process: implications for agricultural sustainability in Ethiopia. *International Journal of Agricultural Sustainability*, 17(2), 127-145.

Nakayiwa, F., Elhag, M. M., Santos, L., Kifle, D., & Tizikara, C. (2020). Strengthening higher education capacity to promote gender inclusive participation in science, technology and innovation. *African Journal of Rural Development*, 5(3), 65-86.

Self-Help Groups (SHGs) as a Platform for Women's Economic Growth

¹Dr. N Krishna Priya*, ²Dr. Anil Kumar, ³Dr. Subhash Verma

¹Coordinator, DAATTC Kadapa- 516 003 ANGRAU, Guntur

^{2,3}Assistant Professor, School of Agriculture, Eklavya University Damoh, M.P

Self-Help Groups (SHGs) have become a key tool for women's economic empowerment and social empowerment in rural and semi-urban communities. SHGs mobilize savings, create access to collateral-free credit, and empower collective action among women to pursue income-generating activities, micro-enterprises, and entrepreneurship. SHGs provide platforms for capacity building, financial literacy, and skill development and thus increase women's decision-making capacities in households and communities. With the support of government initiatives, NGOs, and banks, SHGs have been able to effectively bring about poverty alleviation, employment, and inclusive growth. Adversities like restricted market linkages, managerial capabilities, and finance have not deterred SHGs from making a revolutionary impact on women's empowerment. Further strengthening of SHGs with digital platforms, market linkages, and policy support will further boost women's economic engagement and ensure sustainable development.

2. Introduction

Women make up almost half of the world population and contribute significantly to domestic work, farming, and rural livelihoods. Yet, their work becomes invisible as they lack access to money, have limited mobility, and are subject to socio-cultural constraints. In India and most developing nations, the economic role of women is constrained by structural disadvantage. Self-Help Groups (SHGs) emerged as a novel community-based solution to overcome these challenges. SHGs are a means of collective action, peer support, and micro-finance, which allow women to engage in income-generating activities, entrepreneurship, and decision-making. SHGs go a long way in empowering women, reducing poverty, and promoting inclusive rural development through the development of savings, credit, and cross-learning.

3. Concept of Self-Help Groups (SHGs)

A Self-Help Group (SHG) is a voluntary group consisting of 10–20, typically women, who gather to save, handle small credit requirements, and assist one another in social and economic development.

Core Characteristics of SHGs

- Small homogeneous groups.
- Regular savings and thrift culture.
- Low-interest internal lending.
- Peer pressure and collective responsibility for repayment.
- Linkages with banks, NGOs, and government programs.
- Focus on social and economic empowerment.

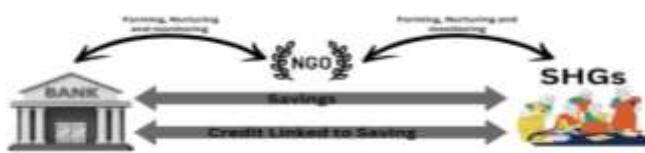
Source: <https://www.ih21.org/aktuality/revitalizing-the-indian-rural-economy-through-womens-self-help-groups>

4. Goals of Self-Help Groups (SHGs)

Self-Help Groups (SHGs) are established with the central goal of improving women socially,

economically, and developmentally by building collective strength and mutual support.

1. Economic Objectives


SHGs seek to collect small savings of the women members and cultivate the habit of thrift and financial prudence. The savings so collected are shared and used to disburse collateral-free loans to support livelihood-oriented activities, minimizing reliance on informal moneylenders. Through promotion of women to start micro-enterprises, petty trade, and entrepreneurial activities, SHGs contribute to generating self-sustaining income and improving family welfare as well as poverty alleviation.

2. Social Objectives

SHGs are very important in building the confidence, self-esteem, and decision-making ability of women. Through collective operations, they facilitate solidarity and collective bargaining strength, so that women are able to raise issues at family and community levels. They also contribute to challenging age-old gender roles and narrowing social inequalities, thus promoting inclusiveness and equity.

3. Developmental Objectives

Apart from economic and social empowerment, SHGs aim at higher development objectives. They generate awareness regarding health, nutrition, sanitation, and education for better, balanced development in quality of life. SHGs also develop leadership skills among rural women and connect them with government initiatives, institutions, and schemes of welfare, bridging the gap between policies and grassroots levels.

Source: <https://fightclubias.com/self-help-group-history-functions-benefits-case-studies-examples>

5. SHGs and Women's Economic Growth

Self-Help Groups (SHGs) have become effective tools for increasing women's economic contribution and financial empowerment. Through collective resource mobilization, relationships of trust, and exposure to financial services, SHGs enhance women's ability to become productive household and community members.

5.1 Access to Credit and Financial Inclusion

Perhaps the biggest strength of SHGs is to bring about financial inclusion. By empowering women to take collateral-free loans, SHGs break the monopoly of informal moneylenders. The NABARD-promoted SHG–Bank Linkage Programme in India has integrated millions of rural women into the formal banking sector, enabling them to invest in productive activities.

5.2 Entrepreneurship Development

SHGs motivate women to pursue micro-enterprises like tailoring, food processing, handicrafts, dairy farming, and retail stores. Collective work reduces the cost of production, increases the availability of raw material, and raises bargaining strength, hence making women competitive in the local marketplace.

5.3 Skill Development and Capacity Building

Capacity development in skill acquisition, accounting, computer literacy, and entrepreneurship provides women with critical managerial skills. This capacity development enhances their confidence and helps them adapt to current market demands.

5.4 Job Creation

SHGs not only generate self-employment for members but also local employment opportunities through micro-enterprises, which curb seasonal migration and reliance on low-wage labor.

5.5 Social Empowerment

Economic independence through SHGs equates to increased social acceptance. Women have a stronger

say in domestic decisions, enhanced mobility, and decreased dependence on exploitative credit networks.

6. Government and Institutional Support

The development and sustainability of Self-Help Groups (SHGs) have been well supported by government institutions, financial institutions, and overseas agencies. These efforts help channel SHGs not just to mobilize savings but also to reach out to areas of income generation, entrepreneurship, and social development.

NABARD SHG–Bank Linkage Programme (1992):

Initiated by the National Bank for Agriculture and Rural Development, the scheme is also the world's largest microfinance program. It linkages SHGs to formal financial institutions, giving access to credit without collateral to millions of rural women. The model has been instrumental in decreasing dependence on moneylenders and ensuring financial inclusion.

National Rural Livelihood Mission (NRLM):

Initiated in 2011, NRLM intends to organize women into SHGs and federations, boosting their livelihood chances through skill upgradation, credit delivery, and enterprise development. It plans to have "poverty-free villages" by empowering rural women as change agents.

State Rural Livelihood Missions (SRLMs):

Working under NRLM, SRLMs offer state-specific plans and tailored interventions. They offer training, market linkages, and convergence with welfare programs to SHGs.

NGO Initiatives:

Non-governmental organizations have been pivotal in capacity building, awareness generation, and facilitating market access for SHG products. They act as bridges between government programs and grassroots communities.

International Agencies:

Global organizations like UNDP, IFAD, and the World Bank have extended technical, financial, and policy support to strengthen SHG-based programs, making them more sustainable and impactful.

7. Case Studies and Success Stories

The success story of Self-Help Groups (SHGs) as a tool of women's empowerment can be seen best through examples of places all over India, where SHGs have changed lives and livelihoods.

7.1 Kudumbashree, Kerala

Initiated in 1998, Kudumbashree ranks as one of the largest poverty eradication and women empowerment schemes in the world. Structured as a powerful three-tier community formation, it has facilitated women to take up farming, micro-enterprises, and social development initiatives. Women have diversified into the sectors of organic farming, catering, garment manufacturing, and public service posts, showing the ability of SHGs to go beyond economic activity.

7.2 SEWA (Self-Employed Women's Association), Gujarat

SEWA, established in 1972, is an innovative movement that has been able to mobilize thousands of women workers into SHGs and cooperatives. It has increased women's bargaining power, improved access to markets, and provided them with fair wages. By combining microfinance with skill development, SEWA has been able to empower women to organize themselves as entrepreneurs and contribute both to household income and community well-being.

7.3 Andhra Pradesh and Telangana Models

These states have developed sound SHG federations through the National Rural Livelihood Mission (NRLM). SHGs-based women-led businesses in dairy, agriculture, and retail have not only increased incomes but also developed strong institutions at the

community level. The federated architecture has given SHGs economies of scale, professional management, and better linkages with banks and markets.

8. Challenges Faced by SHGs

Though Self-Help Groups (SHGs) have proved to be a powerful tool for women empowerment and rural poverty reduction, they still have some issues that impede their development and sustainability. One of the key issues is restricted access to large credit and financial markets, which inhibits micro-enterprise expansion. Most SHG members also lack entrepreneurial and managerial skills to manage enterprises effectively.

A further issue is the excessive reliance on subsidies and government incentives, which can suppress self-reliance and development. In rural communities, the social and cultural norms of gender as well as socio-cultural barriers confine women's involvement in decision-making, limiting their control within households and communities.

In addition, SHG products are plagued by marketing and technology issues, such as poor branding, lack of access to the digital space, and weak supply chains, that impact profitability. Without these issues being addressed through capacity building, digital empowerment, and institutional strengthening, the maximum potential of SHGs for women's economic growth will not be realized.

9. Strategies to Strengthen SHGs for Women's Economic Growth

To enable SHGs to reach their full potential in the empowerment of women and rural development, overall strategies need to be adopted addressing financial, social, and technological needs.

1. Financial Strengthening

Provision of timely and sufficient credit is indispensable. Improving the flow of bank credit, promoting digital financial services, and providing insurance and pension schemes will enhance

financial security and resilience of the members of SHGs.

2. Capacity Building

Development of skills through continuous training in business management, marketing, and digital literacy will empower women to run enterprises successfully. Exposure visits and leadership development initiatives will further enhance confidence and innovation.

3. Market Linkages

Strong market linkages are necessary to ensure sustainable income. Development of e-commerce platforms for SHG products and enabling collaborations with corporates under CSR initiatives will provide bigger and more equitable markets.

4. Technology Adoption

Fostering digital means for bookkeeping, payments, and e-commerce will increase efficiency and transparency. Moreover, facilitating agro-processing and value-addition technologies will make the product more competitive and profitable.

5. Policy Support

Strong government support through enhanced NRLM and SHG federations, in addition to tax reliefs and subsidies for women entrepreneurs, will ensure long-term sustainability and growth.

10. Conclusion

Self-Help Groups have emerged as potent tools for economic empowerment of women. By stimulating savings, offering access to credit, and encouraging entrepreneurship, SHGs have empowered women from being passive recipients to becoming active change agents. While the success of SHGs rests not just with financial progress, but also with confidence building, leadership, and social equity among women, in the future, deepening SHG networks with technology, skill building, and sustainable market linkages will further propel women's economic

advancement, poverty alleviation, and inclusive rural development.

References

Brody, C., De Hoop, T., Vojtkova, M., Warnock, R., Dunbar, M., Murthy, P., & Dworkin, S. L. (2015). Economic self-help group programs for improving women's empowerment: A systematic review. *Campbell Systematic Reviews*, 11(1), 1-182.

Mohapatra, S., & Sahoo, B. K. (2016). Determinants of participation in self-help-groups (SHG) and its impact on women empowerment. *Indian Growth and Development Review*, 9(1), 53-78.

Nichols, C. (2021). Self-help groups as platforms for development: The role of social capital. *World Development*, 146, 105575.

Ratnaparkhe, S. D., & Narwade, M. M. (2024). Role of women self help group in economic empowerment of women. *B. Aadhar*, 23.

Vasishta, P., & Singla, A. (2025). Self-help groups and women empowerment: developing a framework for sustainability of SHGs. *International Journal of Social Economics*.

Nematode Diseases of Vegetables: A Silent Threat to Vegetable Production

Vikas Kumar¹, Anukiran Sahu², Avanish Kumar Singh³

¹ PG Scholar, Department of Entomology, Bihar Agricultural University, Sabour, Bihar

² Assistant professor-cum-junior scientist, Department of Entomology, Bihar Agricultural University, Sabour, Bihar

³ Assistant professor-cum-junior scientist, Department of Horticulture (Vegetable Science), Bihar Agricultural University, Sabour, Bihar

Introduction

Vegetable production, a cornerstone of food security and nutritional health, faces a significant and often underestimated threat—nematodes. These microscopic, soil-borne worms are among the most destructive pests in horticulture, capable of causing severe damage to vegetable crops. Their impact is not just limited to visible symptoms like wilting or poor growth but also extends to major economic losses, particularly in countries like India where vegetable cultivation is vital to rural livelihoods.

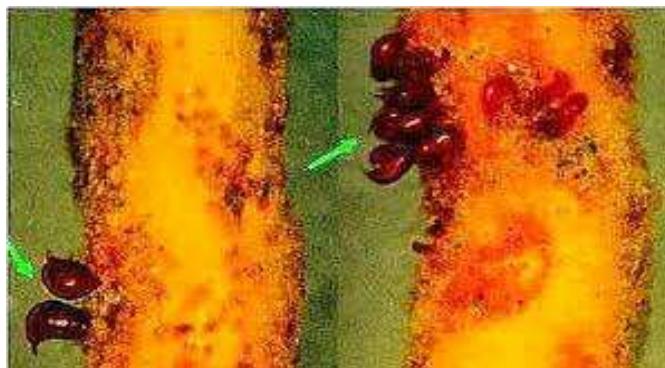
Common Nematodes Affecting Vegetables

1. Root-Knot Nematodes (*Meloidogyne* spp.)

Root-knot nematodes are perhaps the most notorious group among plant-parasitic nematodes. These pests infect a broad range of crops—over 3,000 plant species—including tomatoes, eggplants, peppers, and cucurbits. They induce gall formation on roots, which interferes with water and nutrient uptake, ultimately leading to stunted growth and yield losses that can exceed 80% under severe infestation.

2. Reniform Nematodes (*Rotylenchulus reniformis*)

These nematodes primarily target solanaceous and malvaceous vegetables such as tomatoes, brinjals, and okra. The infection often manifests as yellowing foliage, poor fruit development, and general plant decline. Under high nematode pressure, farmers may experience up to 50% yield reduction.


3. Burrowing Nematodes (*Radopholus similis*)

Although more commonly associated with crops like bananas and coconut, burrowing nematodes occasionally affect vegetables in mixed cropping systems. Their ability to cause root lesions leads to “toppling” symptoms in bananas and can indirectly impact vegetables grown nearby by altering soil health.

4. Citrus Nematodes (*Tylenchulus semipenetrans*)

While typically problematic in citrus orchards, these nematodes can affect certain vegetable species when intercropped with citrus trees. They reduce root efficiency and contribute to slow plant decline, hampering growth and productivity.

Economic Implications

Nematode infestations result in substantial economic losses. In India alone, annual crop losses attributed to nematodes are estimated at over ₹242 billion. Vegetables cultivated under protected conditions (like greenhouses) are particularly vulnerable, facing potential yield reductions of up to 60%. Such losses severely affect farmers' profitability and food supply chains.

Strategies for Management

Effective nematode management calls for a holistic approach known as Integrated Nematode Management (INM). Key components include:

- **Use of Resistant Varieties:** Selecting vegetable cultivars bred for nematode resistance is both economical and environmentally sustainable.

- **Soil Solarization:** Covering moist soil with plastic sheets during peak summer months can elevate soil temperatures, thereby killing nematodes in the upper soil layers.
- **Biological Control:** Beneficial microbes such as *Paecilomyces lilacinus* and predatory nematodes can naturally suppress harmful nematode populations.
- **Crop Rotation:** Alternating host and non-host crops breaks the nematode life cycle, reducing their population over time.
- **Organic Amendments:** Adding compost, neem cake, or green manures can enhance soil health and create conditions less favourable for nematodes.
- **Judicious Chemical Use:** Nematicides, when used cautiously and as part of INM, can be effective in managing severe infestations.

Conclusion

Nematodes represent a hidden but formidable adversary in vegetable farming. Their ability to damage roots and reduce crop yields silently underscores the need for proactive management. By integrating traditional knowledge with modern techniques, it is possible to minimize their impact, safeguard food production, and ensure the sustainability of vegetable farming.

Nematode Pest of Rice and Their Management

Rishu Kumar¹, Anukiran Sahu², Avanish Kumar Singh^{3*}, Kiran Kumari⁴

¹ PG Scholar, Department of Entomology, Bihar Agricultural University, Sabour, Bihar

² Assistant professor-cum-junior scientist, Department of Entomology, Bihar Agricultural University, Sabour, Bihar

³ Assistant professor-cum-junior scientist, Department of Horticulture (Vegetable Science), Bihar Agricultural University, Sabour, Bihar

⁴ Associate professor-cum-senior scientist, Department of Entomology, Bihar Agricultural University, Sabour, Bihar

Introduction

Nematodes, also known as roundworms, are microscopic, unsegmented worms belonging to the phylum *Nematoda*. They are among the most abundant animals on Earth and inhabit a wide range of environments, including soil, freshwater, marine habitats, and inside plants and animals. While many nematodes are free-living and play beneficial roles in nutrient cycling, some are parasitic. Their own movement within soil pore spaces is negligible. They spread from one place to another along with infected planting materials (seedlings/bulbs, tubers etc.) or with irrigation water, agricultural machinery etc.

Rice (*Oryza sativa*) is globally vital, especially in Asia, feeding billions. However, production is challenged by plant-parasitic nematodes (PPNs), which are microscopic roundworms that attack rice roots and shoots.

Key nematode pests on rice include:

- Rice white tip nematode (*Aphelenchoides besseyi*)
- Rice root-knot nematode (*Meloidogyne graminicola*)
- Rice root nematode (*Hirschmanniella oryzae*)
- Ufra Disease of Rice (*Ditylenchus angustus*)

1. White tip Disease of Rice

Common Name: White tip nematode

Scientific Name: *Aphelenchoides besseyi*

Host Crop: Rice

Distribution: Madhya Pradesh, Jharkhand, Odisha, West Bengal, Andhra Pradesh, Assam, Himachal Pradesh, Gujarat, Tamil Nadu, Kerala

Symptoms:

- White leaf tips: The tips of young leaves turn white or pale, usually 1–5 cm in length.
- Leaf twisting and distortion: Affected leaves may become twisted, crinkled, or deformed.
- Stunted growth: Infected plants often appear shorter and weaker than healthy ones.
- Poor panicle emergence: Panicles may emerge late or be malformed.
- Grain sterility: Partially or fully empty grains can lead to yield loss.
- Reduced tillering: Plants may produce fewer tillers.

Management:

a. Seed Treatment:

- **Hot Water Treatment:** Soak seeds in water at 52–54°C for 10–15 minutes to kill nematodes.
- **Saltwater Floatation:** Float seeds in saltwater (20% NaCl solution); discard floating (light and likely infected) seeds.

b. Use of Clean, Certified Seeds:

- Avoid sowing nematode-infected seeds.
- Use resistant or tolerant varieties if available.

c. Cultural Practices:

- Early planting in some regions reduces risk.
- Avoid monoculture of rice; use crop rotation.
- Destroy crop residues that may harbor nematodes.

d. Chemical Control:

- Seed treatments with nematicides (e.g., carbofuran or thionazin) can reduce nematode load, though not always environmentally recommended.
- Use only when necessary and under expert guidance.

Management:

a. Cultural Control

- Continuous flooding of rice fields and raising seedlings in flooded conditions reduces nematode invasion
- Crop rotation with non-host plants such as daincha, cowpea, sesame, or marigold (*Tagetes* spp.) helps reduce populations
- Soil solarization: Cover fields with clear plastic sheets (25–100 µm thickness) for 3–6 weeks before planting to heat the soil and kill eggs/juveniles
- Bare fallowing and weed control disrupt the

(Symptoms of Rice white tip Nematode Disease)

2. Root-knot Disease of Rice

Common Name: Rice root-knot nematode

Scientific Name: *Meloidogyne graminicola*

Host Crops: Main host rice, but can also attack wheat in North India; graminaceous weeds

Symptoms:

- Stunting and yellowing of seedlings in rice nursery
- Less tillering
- Roots show small curved galls on tips initially
- Galls become spindle-shaped and turn brown later

nematode's lifecycle and prevent alternative host plants

b. Biological Control

Use beneficial bacteria such as *Bacillus subtilis*, *Pseudomonas fluorescens*, and fungi like *Trichoderma viride* or *Paecilomyces lilacinus* to suppress nematode populations in roots and soil. Applying antagonistic bioagent mixtures, such as *Bionema* (based on *Verticillium chlamydosporium*), combined with neem cake and FYM, has proved effective in similar contexts.

c. Chemical Control

- Seedling dips or drenches with nematicides such as carbosulfan, oxamyl, phorate, or carbofuran, reduce nematode reproduction.

- Soil can be injected with fumigants like Telone before planting to reduce nematode load. However, chemical use requires strict adherence to local regulations and safety norms.

d. Nutrition & Tolerance

Nitrogen fertilization (e.g. ~80 kg N/ha) can help the rice plants tolerate infection by increasing grain weight and yield, but it may inadvertently boost nematode population over time.

3. Rice root Nematode Disease

Common Name: Rice root nematode

Scientific Name: *Hirschmanniella* spp. (*H. oryzae*, *H. mucronata*, *H. gracilis*)

Host Crop: Rice

Symptoms

Root Symptoms:

- Browning or dark brown lesions on roots.
- Root tip necrosis (death of growing tips).
- Swollen, stubby, or rotted roots.
- Poor root branching.
- Presence of black masses (due to secondary infection by fungi or bacteria).

Above-Ground Symptoms:

- Stunted plant growth.
- Yellowing or chlorosis of leaves.
- Delayed tillering.
- Wilting during water stress.
- Patchy or uneven plant growth in the field.

Field Indicators:

- Symptoms are usually more severe in low-lying or poorly drained areas.
- Yield reduction due to poor nutrient and water uptake.

Management Practices

a. Cultural Control

- **Crop Rotation:** Rotate rice with non-host crops (e.g., legumes like mung bean, groundnut, or soybean).
- **Fallowing and Dry Plowing:** Drying the field between crops and plowing to expose nematodes to desiccation.
- **Improved Drainage:** Avoid prolonged flooding in the absence of rice crop.
- **Transplanting Older Seedlings:** Older seedlings (25–30 days old) can better tolerate nematode damage.
- **Clean Planting Material:** Use nematode-free nursery beds.

b. Resistant Varieties

- Some rice varieties show resistance or tolerance; selection depends on the region and nematode species.
- Example: 'IR64' shows moderate resistance in many regions.

c. Biological Control

- *Pasteuria penetrans* (a parasitic bacterium).
- Nematophagous fungi like *Paecilomyces lilacinus* and *Trichoderma* spp.

d. Chemical Control

- Nematicides (use with caution and based on economic thresholds):
 - Carbofuran (restricted in many countries due to toxicity).
 - Fipronil (has some nematicidal properties).
- Seed treatments with nematicides or biocontrol agents can help reduce early infection.

e. Organic Amendments

- Application of organic matter (e.g., compost, neem cake, poultry manure) improves soil health and suppresses nematodes.

Conduct long, deep dry ploughing before sowing to disrupt overwintering larvae.

(Symptoms of Rice root Nematode Disease)

4. Ufra Disease of Rice

Common Name: Rice stem nematode

Scientific Name: *Ditylenchus angustus*

Host Crops: Rice

Symptoms:

Early Stage (seedling to ~2 months)

- Leaf sheaths and young leaves show mosaic or “splash” chlorotic patterns, consisting of pale spots or dots at the base of leaves.
- Gradually these spots turn brown or dark, leaf margins become corrugated or twisted, and leaves may shrivel.
- Multiple shoots may emerge from a single node, giving plants a bushy appearance.

Reproductive Stage (heading)

- Panicles may fail to emerge at all, emerge partially or emerge fully but with mostly chaffy or unfilled grains.
- The severity classification depends on timing and intensity of nematode infection during plant development.

Management:

• Cultural Control

Burn or plough under rice stubble and residues immediately after harvest—this is highly effective in reducing nematode population.

Practice crop rotation with non-hosts like mustard and jute, or diversify with other crops rather than deepwater rice consecutively.

Delay transplanting or sowing to avoid peak nematode activity period.

• Host Resistance & Varieties

Grow resistant or tolerant varieties where available—for instance, cultivars such as Rayada 116.

• Chemical Control

- Soil application of granular nematicides like carbosulfan (e.g. carbofuran 3 G or 5 G) at around 1 kg a.i./ha, applied either before transplanting or at sowing, helps lower infestation dramatically.
- Foliar spray or seed dressing with systemic treatments such as carbosulfan (e.g. 0.02% foliar spray at ~40 and ~120 days) has reduced incidence significantly in field trials.
- Other treatments like benomyl or diazinon have shown partial efficacy in experimental trials, though not as consistently effective as carbofuran or benomyl.

• Organic Amendments

- Organic materials, including neem-based formulations, mustard cake, jute seed dust, and other foliage dusts applied at high rates (around 200 kg/ha), have proven to reduce

nematode damage and improve yield by up to ~80% compared with untreated controls.

(Symptoms of ufra disease of rice)

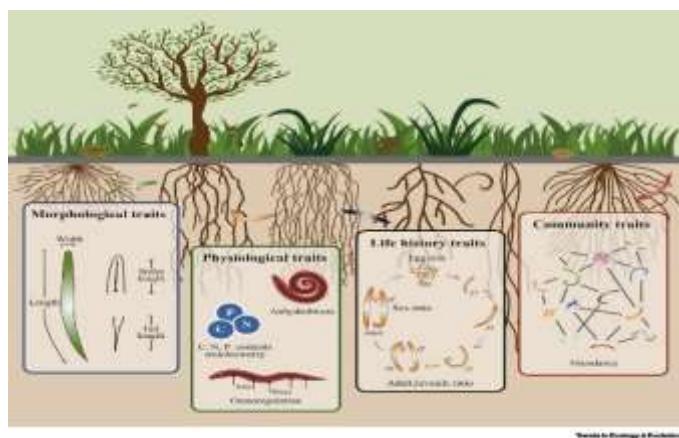
- These can serve as environmentally safer or cost-effective alternatives in lieu of chemical nematicides.

- **Nutrition & Soil Health**

Balanced fertilization, especially inclusion of zinc, can help plants better tolerate nematode feeding and minimize yield loss.

Impact of Change in Temperature on Nematodes

Anukiran Sahu¹, Avanish Kumar Singh^{2*}, Swapnil Bharati³, Vijay Kumar Singh²


¹Department of Entomology, Bihar Agricultural University, Sabour, Bihar

²Department of Horticulture (Vegetable Science), Bihar Agricultural University, Sabour, Bihar

³Department of Horticulture (Floriculture and landscaping), Bihar Agricultural University, Sabour, Bihar

Introduction

Extreme weather events and climate change have a continuous impact on pest profiles in the current global food production system. Plant parasitic nematodes (PPNs) significantly decrease the economic value of a range of food production in different climates. Their herbivory nature also contributes to a variety of ecosystem functions, including the cycling of nutrients, the distribution and turnover of plant biomass, the formation of vegetation communities, and the modification of the rhizosphere microbial consortium through changes in the pattern of root exudation. Therefore, PPNs serve as ecological drivers, as do the great majority of free-living nematodes. Temperature, precipitation, humidity, soil and atmospheric carbon dioxide levels, and weather extremes all have a significant influence on PPN biology and physiology due to their direct exposure to the open environment. The PPNs' biogeographic range, distribution, abundance, survival, fitness, reproduction, and disease potential are all significantly impacted by the adverse effects of climate change.

(Climate change influence the soil microbial traits)

Effect of climate change on nematodes:

1. Effect on movement of PPN:

In present scenario, global temperature is expected to increase about 1.5-2°C in the future. With change in temperature affect the movement of plant parasitic nematodes. *Heterodera glycines* (soybean cyst nematode), after being identified in Canada has spread to the northern and north-eastern due to temperature change. There was a latitudinal shift seen in some PPNs due to climate change (Bebber et al., 2013). On the contrary, some study found that climate change does not affect the movement. Increase of nematode population in new geographical location will obviously pose a serious threat to the crop productivity in that particular area.

2. Effect on diversity:

Increase in temperature also causes differential changes in the abundance and distribution of the PPNs. The Indian Kashmir valley likewise showed higher PPN abundance at higher temperatures (Nisa et al., 2021). The distribution of the pine wilt nematode *B. xylophilus* and its vector beetle *Monochamus alternatus* has also been accelerated by rising temperatures in a number of regions of the world, with Asia, northern Europe, and America being the most vulnerable (Hirata et al., 2017). On the other hand, PPN abundance decreased as temperatures rose. In a similar vein, PPN abundance in semiarid grasslands declined due to global warming (combined with increased CO₂). The nematode communities that live in the soil will also be impacted by the higher temperatures. However, based on research, it may be inferred that climate change may cause some PPN species to migrate in soil more frequently as a result of global warming.

Nonetheless, in long run, how such migration will swing the PPN- crop interaction on geospatial leverage is a matter of speculation at the moment.

3. Effect on Abundance:

Temperature increases will also change the pest status of some nematode species in addition to the longitudinal and latitudinal changes. In the southern United Kingdom, higher soil temperatures cause a decrease in the *G. pallida* population while increasing the *G. rostochiensis* population (Jones et al., 2017). Similarly, it is anticipated that rising temperatures would encourage *R. similis*, which is typically found at lower elevations, to spread to higher elevations in Sub-Saharan Africa, whereas *P. goodeyi*, which has a thermoregulated segregation, is more harmful at higher elevations (in review of Coyne et al., 2018). Plantains and bananas cultivated at higher elevations will be more vulnerable to PPN damage as a result.

4. Impact on lifecycle:

Under ideal conditions, the majority of PPNs finish their life cycle in two to four weeks, and even a small temperature change has a significant effect on how quickly they complete their life cycle. Warmer temperatures promote faster development, while lower temperatures encourage slower development. In this regard, several generations with shorter life cycle durations every season are the outcome of temperature increases brought on by global warming. The potato cyst nematode, *G. rostochiensis* was expected to spread its range and produce more generations annually as a result of global warming using simulated models (Carter et al., 1996). More generations of nematodes will undoubtedly contribute to an increase in the parasite burden on crops, which will have a detrimental effect on output.

5. Effect on sex ratio:

On the other hand, high temperature has been found to cause sex reversal from female to male (which are non-parasitic in nature) in the parthenogenetic root-knot nematodes.

6. Effect on distribution:

The carbon-limited soil ecosystem of polar habitat, speculated higher nematode abundance in deeper soil due to vertical range expansion. However, such increase in metabolism and O₂ consumption can be expected in the soil inhabiting host-seeking PPN stages due to global warming, which might bring same effects or reduce their survival duration in soil due to high energy usage. These situations in a series indicate a dichotomy in plant-nematode parasitism under elevated temperature condition, where the climate change effects can be estimated by both increase and decrease in total parasitism. If so, more researches are needed to conclude the final outcome of the expected dualism at species-specific and location-appropriate levels.

7. Effect on host mortality:

Climate change leads to increase the number of tree mortality nematodes like, *Burshaphelenchus. xylophilus*, their vectors and fungi. That interaction cause tree mortality by causing water stress to the tree. Thus, high temperature is likely to cause water stress in the host trees infected with PPNs and thereby affect their uptake of nutrition. Similarly, due to continue exposure of high temperature the nematodes became thermotolerant consequently avirulent strains of nematodes became virulent.

Conclusion:

The repercussions of climate change are constantly becoming apparent in a variety of ways. PPN colonization, abundance, and harm are likely to be exacerbated by events such range extension, wide distribution, enhanced generation, abundant reproduction, expanded root biomass, and diminished host defense. In this context, higher winter temperatures and temperate locations will likely continue to contribute to a greater number of PPNs, which will ultimately influence the economic output in those areas. Because there is "no-hindrance" for the nematodes, their invasion and range expansion into newer places may cause chaos,

and the resulting population build-up will be uncontrollable. The higher rate of reproduction and completion of above-normal generations every season may have turned matters worst.

Additionally, a decrease in relative humidity combined with an increase in temperature and UV radiation may make a number of pest management techniques useless. Sex reversal, cryptobiotic life phases, decreased survivability in open soil, and changed pathogenicity are a few examples of events that could help negate the atrocities. It appears to produce a contraposition effect when all the events are arranged in a line for a generalized conclusion,

Table:1 Effect of climate change (Temperature) on nematodes in different places.

Ecosystem/ Cropping system	Nematode species	Nematode abundance	Country	Reference
Pine forest	<i>Bursaphelenchus mucronatus</i> , <i>B. xylophilus</i>	Increased prevalence	Switzerland	Rebetez and Dobbertin, 2004
Coffee plantation	<i>Meloidogyne incognita</i>	Increased pathogenic potential	Brazil	Ghini et al., 2008
Carrot	<i>Heterodera carotae</i>	Increased juvenile and egg production	Italy	Colagiero and Ciancio, 2012
Grassland	<i>Paratylenchus</i> spp., <i>Filenchus</i> spp., <i>Helicotylenchus</i> spp.	Increase in herbivorous nematodes with extended life span	Denmark	Stenvbak et al., 2012
Grassland	<i>Aphelenchoides</i> spp., <i>Paratylenchus</i> spp., <i>Pratylenchus</i> spp., <i>Rotylenchus</i> spp.	Effect on abundance	China	Yan et al., 2017
Potato	<i>Globodera rostochiensis</i> , <i>G. pallida</i>	Increased diversity of <i>G. rostochiensis</i> but not <i>G. pallida</i>	United Kingdom	Jones et al., 2017
Rice-wheat rotation	<i>Filenchus</i> spp., <i>Psilenchus</i> spp., <i>Hirschmanniella</i> spp., <i>Pratylenchus</i> spp.	Not affected (nematode diversity increased)	China	Wang et al., 2021
Tomato	<i>Meloidogyne incognita</i>	Nematode population affected	India	Berliner et al., 2023

where one set of factors is likely to exacerbate the parasitic potential of the PPNs while the other set of factors appears to function in the other direction. However, at this time, it is challenging to forecast any general trend. The PPNs will most likely react in accordance with their unique and regional differences after the process of natural adaptation and evolution. In this critical condition we may no longer rely on the current PPN management tactics, and should better move to 'climate-smart nematode management' focused on reduced crop loss and better ecosystem services with less GHG emission and more important to resilience of agricultural systems

References

1. Bebber, D., Ramotowski, M., and Gurr, S. (2013). Crop pests and pathogens move polewards in a warming world. *Nat. Clim. Change* 3, 985–988. doi: 10.1038/nclimate1990.
2. Berliner, J., Ganguly, A. K., Kamra, A., Sirohi, A., and VP, D. (2023). Effect of elevated carbon dioxide on population growth of root-knot nematode, *Meloidogyne incognita* in tomato. *Indian Phytopathol.* 76, 309–315. doi: 10.1007/s42360-022-00584-8.
3. Carter, T. R., Saarikko, R. A., and Niemi, K. J. (1996). Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. *Agric. Food Sci. Finl.* 5, 329–350. doi: 10.23986/afsci.72750.
4. Colagiero, M., and Ciancio, A. (2012). Climate changes and nematodes: expected effects and perspectives for plant protection. *Redia* 94, 113–118.
5. Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., et al. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. *Annu. Rev. Phytopathol.* 56, 381–403. doi: 10.1146/annurev-phyto-080417-045833.
6. Ghini, R., Hamada, E., Pedro Júnior, M. J., Marengo, J. A., and Gonçalves, R. R. V. (2008). Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. *Pesqui. Agropecu. Bras.* 43, 187–194. doi: 10.1590/S0100-204X2008000200005.
7. Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., Ohashi, H., et al. (2017). Potential distribution of pine wilt disease under future climate change scenarios. *PLoS One* 12, e0182837. doi: 10.1371/journal.pone.0182837.
8. Jones, L. M., Eves-van den Akker, S., van-Oosten Hawle, P., Atkinson, H. J., and Urwin, P. E. (2018). Duplication of *hsp-110* is implicated in differential success of *Globodera* species under climate change. *Mol. Biol. Evol.* 35, 2401–2413. doi: 10.1093/molbev/msy132.
9. Nisa, R. U., Tantray, A. Y., Kousser, N., Allie, K. A., Wani, S. M., Alamri, S. A., et al. (2021). Influence of ecological and edaphic factors on biodiversity of soil nematodes. *Saudi. J. Biol. Sci.* 28, 3049–3059. doi: 10.1016/j.sjbs.2021.02.046.
10. Rebetez, M., and Dobbertin, M. (2004). Climate change may already threaten scots pine stands in the Swiss Alps. *Theor. Appl. Climatol.* 79, 1–9. doi: 10.1007/s00704-004-0058-3.
11. Stevnbak, K., Maraldo, K., Georgieva, S., Bjørnlund, L., Beier, C., Schmidt, I. K., et al. (2012). Suppression of soil decomposers and promotion of long-lived, root herbivorous nematodes by climate change. *Eur. J. Soil Biol.* 52, 1–7. doi: 10.1016/j.ejsobi.2012.04.001.
12. Wang, J., Li, M., Zhang, X., Liu, X., Li, L., Shi, X., et al. (2019). Changes in soil nematode abundance and composition under elevated [CO₂] and canopy warming in a rice paddy field. *Plant Soil* 445, 425–437. doi: 10.1007/s11104-019-04330-4.
13. Yan, X., Wang, K., Song, L., Wang, X., and Wu, D. (2017). Daytime warming has stronger negative effects on soil nematodes than night-time warming. *Sci. Rep.* 7, 108. doi: 10.1038/s41598-017-00218-4.

Beyond the Backyard: How Assam's Poultry Sector Can Transform the Rural Economy

Swarup Upadhyaya¹ & Dr. Kanmoni Goyari¹

¹Student of Agribusiness Management at ICAR Indian Veterinary Research Institute, Izatnagar

²PhD Scholar of Poultry Science at ICAR Central Avian Research Institute, Izatnagar.

In Assam, livestock is not just an agricultural commodity; it's a fixed deposit, a college fund, and a cornerstone of rural economy, that enhances disposable income and ensures nutritional security. Despite this deep-rooted dependence, the state's livestock sector is far from realizing its full economic potential. Despite this deep-rooted connection, the livestock sector's contribution to Assam's GDP is a mere 1.17%, considerably lower than the national average of 4.1%. Within this, poultry contributes 22.13% to the state's total meat production, pig (33.71%) and goat (30%) being the other major contributors.

Further analysis reveals a substantial gap between Assam's poultry meat production and its consumption. In 2024, Assam produced only 16.26 metric tonnes (MT) of poultry meat, representing a mere 0.32% of India's total production. In stark contrast, neighbouring West Bengal accounts for approximately 13% of the national output. Research by professors from CKB Commerce College and Central Agricultural University highlights a significant deficit: a gap of 71,690 tonnes in poultry, which further increases to 97,162.5 tonnes for goat and 122,134 tonnes for pig. This combined gap is estimated to have a monetary value of INR 140.60 million.

This significant deficit in production is not without its reasons, as several factors impede the growth of Assam's poultry sector., as identified in the Policy brief published by Government of Assam, includes prevalent diseases, the higher cost of feed, a lack of breeding farms, a significant knowledge gap among farmers, inadequate infrastructure, and stiff competition from neighbouring states with more established poultry industries. Adding to these challenges is the evolving poultry consumption pattern in Assam;

while there's a growing preference for chicken in commercial outlets like KFC, McDonalds etc, household consumption still largely desires in buying local breeds and freshly dressed meat products.

The Government of Assam has introduced several schemes to bolster the poultry farming community. Under the "*Policy for Commercialization of Poultry Sector in Assam, 2024*," entrepreneurs are eligible for a 33% capital expenditure subsidy for both commercial layer and broiler breeding farms. This is a progressive step aimed at encouraging large-scale production. However, the policy's requirement for a minimum capacity of 50,000 birds presents a major hurdle. This high entry barrier effectively excludes smaller, emerging farmers and could deter many potential entrepreneurs from venturing into poultry breeding, consequently restricting the crucial supply of quality Day-Old Chicks (DOCs) essential for the state's entire poultry value chain.

The now-concluded "*Policy for Private Investment Promotion in the Livestock Sector in Assam, 2020*" was instrumental in offering a substantial 50% capital subsidy on layer and broiler farms, processing units and slaughterhouses. Such incentives are vital for developing essential post-production infrastructure, which remains a critical weak link in the supply chain, and their continuation through updated policies will be commendable. Schemes like the "*Special Programme for Existing Entrepreneurs Development (SPEED) Scheme*" have aimed to provide targeted assistance to small-scale rearers, helping those managing units of, for example, 500 to 1,000 ducks or 30 to 50 goats. These initiatives collectively underscore the government's commitment to fostering growth across various levels of the sector

However, for the poultry sector to truly flourish and contribute more significantly to the state's economy, certain adjustments are imperative. Firstly, reducing the minimum bird capacity for the breeder farm subsidy under the "Policy for Commercialization of Poultry Sector in Assam, 2024" would make it more accessible to a wider range of farmers and entrepreneurs who would like to take poultry breeding as a business, fostering a more inclusive and robust breeding ecosystem. While subsidies can incentivize investment, a lack of understanding regarding breed selection, scientific rearing practices, and efficient marketing strategies can undermine their effectiveness. Comprehensive and accessible training programs are of utmost necessity, they should not be limited to focus on best practices but should also include breed selection, perhaps highlighting the potential of breeds like Miri Bird, Doothaigir, Kamrupa, Vanraja, and Pati Duck, and other exotic breeds also should also equip farmers with essential marketing

skills for their poultry meat products. Finally, while frozen meat products may not be the preferred choice for domestic consumption in Assam, they hold immense potential for the Business-to-Business (B2B) segment. Exploring and facilitating market linkages for frozen poultry products with hospitality sectors, institutional buyers, and processing units could open new avenues for growth and reduce post-harvest losses.

By re-evaluating certain policy thresholds, investing in targeted knowledge dissemination, and strategically diversifying market approaches, Assam's poultry sector can truly take flight, contributing substantially to both rural livelihoods and the state's overall economic prosperity.

Women's Leadership in Community-Based Water and Resource Management

¹Dr. N Krishna Priya*, ²Dr. Anil Kumar, ³Dr. Subhash Verma

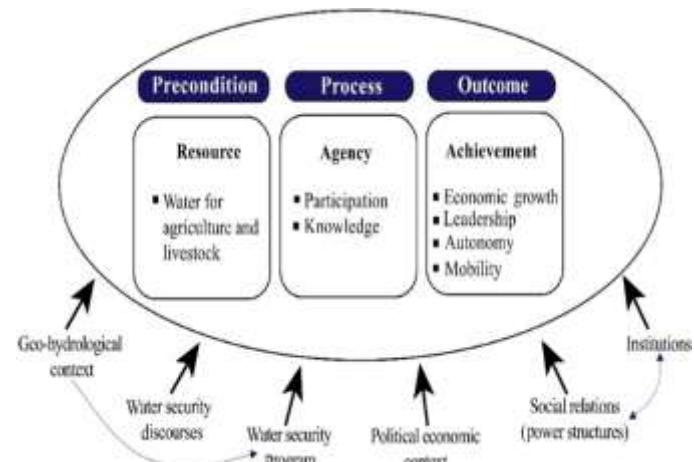
¹Coordinator, DAATTC Kadapa- 516 003 ANGRAU, Guntur

^{2,3}Assistant Professor, School of Agriculture, Eklavya University Damoh, M.P

Women are at the heart of water consumption, conservation, and management but continue to be underestimated as decision-makers. Water and resource management at the community level unlocks room for participatory governance with women's experience and knowledge adding strength to sustainability, equity, and resilience. India, Nepal, Africa, and Latin America examples bring to light how women groups restore water bodies, manage irrigation systems, and facilitate collective action. Yet, socio-cultural practices, resource constraints, and insufficient capacity limit their leadership. Policy reforms, capacity development, finance, and technology should be enhanced to strengthen women's participation towards sustainable development, gender equality, and climate-resilient water management.

Introduction

Water and natural resources are the bases of rural livelihoods, food security, and community health. Nevertheless, water scarcity, climate change, and increasing pressure from population have brought unprecedented pressure on managing the resources. In these circumstances, community-based water and resource management emerged as a participatory and inclusive way that prioritizes local decision-making and sustainable practices.


In this context, women's leadership is central. Women, as core consumers and managers of domestic water and natural resources, possess specialist knowledge, skills, and insights. Their involvement does not only improve the efficiency of the use of resources but also enhances equity, resilience, and sustainability. Encouraging women's leadership in water management and resource governance is thus essential to meet the Sustainable Development Goals (SDGs), specifically SDG 5 (Gender Equality) and SDG 6 (Clean Water and Sanitation).

Significance of Women's Leadership in Resource Management

1. Conventional Knowledge and Experience

Women have indigenous knowledge of rich details regarding water resources, soil fertility,

biodiversity, and conservation practices, thus making them key players in sustainable resource use. Their everyday activities of fetching water, fuelwood, and fodder yield specific insights into seasonality in availability, quality, and consumption patterns of resources. This practical knowledge helps them implement effective practice, avoid resource degradation, and facilitate community resilience while managing natural resources sustainably.

Source: <https://link.springer.com>

2. Water Use Efficiency

Women are key to domestic water management, kitchen garden irrigation, and livestock upkeep, hence making them the fulcrum of effective water use. Their leadership promotes the use of water-

conserving technologies like drip irrigation, mulching, and recycling wastewater. Women maximize productivity while saving resources by combining traditional methods with innovative approaches, ensuring sustainable water usage benefiting both the home and the larger community.

3. Equity and Empowerment

Women's leadership in water management organizations increases their social status and decision-making authority in the community. Such engagement lessens gender inequality by including their voices in planning, governance, and resource allocation. Empowered women not only drive equitable policies but also lead inclusive practices that enhance equity and sustainability in water management.

4. Community Resilience

Women leaders contribute greatly to community resilience building during floods, droughts, and other climate stresses. Through organizing self-help groups (SHGs) and farmer cooperatives, they foster collective action, sharing of resources, and mutual support. Their leadership fosters social capital, facilitates adaptation measures, and ensures vulnerable households' access to resources, thus strengthening the overall community preparedness and long-term sustainability.

Models of Women's Leadership in Community-Based Water Management

Women's leadership becomes more apparent in the form of grassroots institutions and collective groups that guarantee sustainable water and resource management. In most Indian villages, Self-Help Groups (SHGs) have become responsible for managing drinking water supply, maintaining hand pumps, and ensuring quality water. Likewise, Women-led Water User Associations (WUAs) play an active role in canal irrigation scheduling and guarantee fair water distribution among farmers, minimizing conflicts and maximizing productivity.

Source: <https://waterforpeopleindia.org>

At the village level, Pani Panchayats (Water Councils) form a platform on which women become leaders in deciding water distribution, resolving conflicts, and managing watersheds. Their participation reinforces democratic decision-making processes and guarantees equitable access for poor households.

In addition, Watershed Development Committees highlight women's crucial role in soil and water conservation through initiatives like check dams, contour bunding, and afforestation. A notable example is the Sukhomajri watershed project in Haryana, where women's participation secured equitable water distribution and long-term sustainability.

Just as important is Community Forest Management, in which women regulate forest goods for recharge of water, fodder, and fuelwood. Their leadership averts overuse, fosters reforestation, and maintains ecosystem services. Together, these institutions illustrate how women's leadership makes resource governance more robust, equity-enhancing, and resilient in community-based water management systems.

Challenges to Women's Leadership

Despite remarkable progress in women's participation in water and resource management, several barriers continue to restrict their leadership potential. Social and cultural norms rooted in patriarchal traditions often limit women's mobility and discourage their active involvement in public decision-making. Male-dominated water

institutions further marginalize women, restricting their ability to influence governance structures.

Another significant hindrance is the absence of education and awareness. Limited literacy and technical skills among rural women make it hard to deal with intricate legal, financial, and institutional issues of water management. This lowers their confidence and participation in institutional settings.

Besides, restricted access to resources is a major challenge. Women tend not to own land, have poor access to credit, and are constrained from embracing new technologies. Without owning productive resources, their decision-making authority continues to be poor even when they belong to leadership structures.

Last, the work burden complicates matters further. Women already have to work in spheres like caring for the home, child-rearing, agriculture, and gathering resources. Adding more leadership work increases their workload unless there is sufficient community and institutional support.

Strategies to Strengthen Women's Leadership

In order to improve women's leadership in community management of water and resources, specific strategies are needed that take into account capacity, policy, access, awareness, and collective action.

Training and capacity building are essential in order to impart technical skills related to water management, leadership ability, and financial knowledge. Exposure visits and exchange programs help them understand successful projects and become self-assured in decision-making.

Policy and law reforms need to make women's representation obligatory in panchayat institutions, watershed committees, and water user associations. Above all, women must be identified as rights-holders and active decision-makers, not passive recipients of programs.

Enhancing access to finance and technology is yet another critical step. Affordable irrigation equipment, renewable energy technologies, and microfinance can be made available to women farmers, empowering them to implement sustainable practices. The advancement of women-friendly technologies like treadle pumps, portable water filters, and low-cost rainwater harvesting systems minimizes drudgery and enhances efficiency.

Sensitization and awareness campaigns for men, religious institutions, and community leaders can counter limiting cultural values and promote men's acceptance of women in leadership. This guarantees wider community support for inclusive gendered governance.

Lastly, building up networking and collective power aids in making women's voices louder. Empowering self-help groups (SHGs), cooperatives, and federations enhances women's ability to gather resources, increase bargaining power, and impact policy. Establishing regional and national platforms for women leaders facilitates knowledge exchange and demonstrates best practices.

Future Prospects

The future of community-based water and resource management critically rests on the active leadership of women. Climate adaptation will be a key field where the participation of women is a must. Their local knowledge and decision-making abilities can enable communities to react well to uncertain rainfall, droughts, and floods, ensuring just water distribution and sustainable agriculture.

Digital inclusion presents new possibilities for enhancing women's leadership. ICT tools like mobile apps, digital monitoring systems, and social media can help women monitor water use, exchange information, and push for policies at the local, regional, and national levels.

Additionally, women's leadership in water governance contributes to global agendas for

sustainable development. Their inclusion is aligned with guidelines such as the Paris Climate Agreement, the Sendai Framework for Disaster Risk Reduction, and the United Nations Sustainable Development Goals (SDGs) and specifically SDG 5 (Gender Equality) and SDG 6 (Clean Water and Sanitation).

Investment in women's leadership will not only increase community resilience and sustainable resource use but also support inclusive development, climate resilience, and long-term environmental management.

Conclusion

Women's leadership of water and natural resource management at the community level is not just a question of fairness but also of practicality. They are natural custodians of water and natural resources due to their knowledge, commitment, and combined power. Their leadership can be enhanced by dismantling socio-cultural obstacles, upholding policy support, enhancing their capacity, and acknowledging their contributions.

References

Lema, M. W. (2025). Sustaining Rural Livelihoods Through Participatory Water Governance: A Review of Community-Driven Water Resource Management Models in East and Central Africa. *Environmental Quality Management*, 34(3), e70023.

Lima, M. H., Salehin, M., Chowdhury, M. A., Hasan, M. H., Hossain, M. J., & Bala, S. K. (2025). From participation to empowerment: the case of women in community-based water management in hydrologically diverse southwest coastal Bangladesh. *Environment, Development and Sustainability*, 1-28.

Naiga, R., Ananga, E. O., & Kakumba, U. (2024). Gendered participation in water governance: implications for successful community-based water management and women empowerment. *International Journal of Rural Management*, 20(2), 255-270.

Steimanis, I., Hofmann, R., Mbidzo, M., & Vollan, B. (2020). When female leaders believe that men make better leaders: Empowerment in community-based water management in rural Namibia. *Journal of Rural Studies*, 79, 205-215.

Tantoh, H. B., Simatele, D. M., Ebhuoma, E., Donkor, K., & McKay, T. J. (2021). Towards a pro-community-based water resource management system in Northwest Cameroon: practical evidence and lessons of best practices. *GeoJournal*, 86(2), 943-961.

Nano-Bioinoculants: Tiny Tools for Global Food Security

¹Pole Akhila, ²Samalala Manoj Kumar, ³Aman Jaiswal,

¹Ph.D Research Scholar (Agricultural Microbiology), Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh

²Ph.D Research Scholar (Agricultural Microbiology), Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu

³Assistant Professor (Microbiology), Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar.

Nano-bioinoculants represent a revolutionary fusion of nanotechnology and agricultural biotechnology, offering enhanced crop productivity while reducing dependence on synthetic fertilizers. These microscopic delivery systems encapsulate beneficial microorganisms within nanocarriers, providing controlled release, improved survival rates, and targeted deployment of biological agents. Field trials demonstrate yield increases of 15-40% with concurrent reductions in chemical fertilizer usage of 20-50%, positioning nano-bioinoculants as critical tools for sustainable agriculture and global food security. Enhanced research, technology transfer, and policy support can accelerate the implementation of nano-bioinoculant-based farming systems worldwide.

Introduction

Global agriculture faces unprecedented challenges in meeting the food security demands of a rapidly growing population while addressing environmental sustainability concerns. With the world population projected to reach 9.7 billion by 2050, agricultural systems must increase productivity significantly while simultaneously reducing environmental impacts. Traditional intensive farming practices, heavily dependent on synthetic fertilizers and pesticides, have contributed to soil degradation, water pollution, greenhouse gas emissions, and declining soil health.

Bioinoculants, containing beneficial microorganisms that enhance plant growth and nutrient availability, have emerged as promising alternatives to chemical inputs. However, conventional bioinoculant formulations face significant limitations including poor survival rates under adverse environmental conditions, inconsistent field performance, limited shelf life, and inadequate protection of microbial agents during storage and application. Nano-bioinoculants address these constraints through advanced nanotechnology-based delivery systems that protect and precisely deploy microbial agents. By encapsulating beneficial microorganisms within nanoparticles measuring 1-100 nanometers, these

formulations provide enhanced stability, controlled release, and targeted delivery directly to plant root zones (Kumar et al. 2024).

2. What is Nano-bioinoculants?

Nano-bioinoculants are advanced formulations containing beneficial microorganisms encapsulated within nanocarriers. These microscopic delivery systems protect microbial agents from harsh environmental conditions while ensuring targeted and controlled release at specific plant growth stages. The nanocarriers act as protective shields and precision delivery vehicles for beneficial bacteria, fungi, and other microorganisms.

2.2 What is Nanotechnology in Agriculture?

Nanotechnology in agriculture involves the manipulation of matter at the nanoscale (1-100 nanometers) to develop innovative solutions for crop production, plant protection, and soil health management. It enables the creation of smart delivery systems, controlled-release formulations, and precision agriculture tools that enhance efficiency while minimizing environmental impact (Singh et al. 2023).

3. Types of Nano-bioinoculants

Nano-bioinoculants encompass a wide range of beneficial microorganisms encapsulated within

various nanocarrier systems. These formulations are designed to address specific agricultural needs, from nutrient management to plant protection, offering targeted solutions for sustainable crop production.

3.1 Nitrogen-Fixing Nano-bioinoculants

These formulations contain nitrogen-fixing bacteria such as *Rhizobium*, *Azotobacter*, and *Azospirillum* encapsulated in biodegradable nanocarriers. The nano-encapsulation protects these bacteria from environmental stresses and ensures sustained nitrogen fixation throughout the crop growth cycle. Studies show that nano-encapsulated *Rhizobium* provides 25-30% better nodulation compared to conventional inoculants.

3.2 Phosphorus-Solubilizing Nano Formulations

Phosphorus-solubilizing bacteria like *Bacillus* and *Pseudomonas* species are encapsulated to enhance phosphorus availability to plants. These nano formulations release phosphate-solubilizing enzymes gradually, improving phosphorus use efficiency by 20-35%. Mycorrhizal fungi in nano form establish better symbiotic relationships with plant roots.

3.3 Plant Growth-Promoting Nano-bioinoculants

These contain beneficial bacteria such as *Bacillus subtilis*, *Pseudomonas fluorescens*, and *Burkholderia* species that produce plant hormones, enhance root development, and improve stress tolerance. Nano-encapsulation ensures sustained release of growth-promoting compounds throughout the plant development cycle.

3.4 Biocontrol Nano Agents

Beneficial microorganisms like *Trichoderma*, *Pseudomonas*, and *Bacillus* species with biocontrol properties are nano-encapsulated to provide sustained disease suppression. These formulations release antagonistic microbes gradually, maintaining biological control pressure against soil-borne pathogens for extended periods.

3.5 Multi-Functional Nano Consortia

Advanced nano-bioinoculants combine multiple beneficial microorganisms in single formulations. These consortia include nitrogen-fixers, phosphate solubilizers, growth promoters, and biocontrol agents working synergistically to provide comprehensive plant nutrition and protection. Together, these nano-enhanced microbial formulations represent the future of sustainable agriculture, offering precision delivery and enhanced efficacy compared to conventional biological inputs.

4. Role of Nano-bioinoculants in Sustainable Agriculture

Nano-bioinoculants serve as revolutionary tools in modern agriculture, combining the benefits of beneficial microorganisms with the precision of nanotechnology. Their multifaceted activities enhance soil health, promote plant growth, and reduce dependence on chemical inputs, making them essential components of sustainable farming systems (Patel et al. 2024).

4.1 Enhanced Nutrient Use Efficiency

Nano-bioinoculants improve the efficiency of nutrient utilization by plants through controlled and targeted delivery of beneficial microorganisms. The nanocarrier systems ensure that microbial agents reach the root zone in viable conditions, where they can effectively participate in nutrient cycling, nitrogen fixation, and phosphorus solubilization. This precision delivery reduces nutrient losses and improves crop uptake efficiency.

4.2 Controlled Release Technology

Unlike conventional bioinoculants that release all microorganisms immediately upon application, nano formulations provide controlled and sustained release over extended periods. The nanocarrier materials can be designed to respond to specific environmental triggers such as pH, moisture, or temperature, ensuring optimal timing of microbial release to match plant growth requirements.

4.3 Improved Microbial Survival

Nano-encapsulation significantly enhances the survival of beneficial microorganisms under adverse environmental conditions. The protective nanocarriers shield microbes from UV radiation, extreme temperatures, desiccation, and soil acidity, resulting in 5-10 times higher survival rates compared to conventional formulations. This improved survival translates to better field performance and consistent results.

4.4 Targeted Delivery Systems

Nano-bioinoculants can be engineered for site-specific delivery to plant roots, leaves, or seeds. Surface modifications of nanocarriers enable selective binding to specific plant tissues, ensuring that beneficial microorganisms are delivered precisely where they are needed most. This targeted approach maximizes biological efficacy while minimizing waste.

4.5 Reduced Environmental Impact

By enhancing the efficiency of biological inputs, nano-bioinoculants significantly reduce the need for synthetic fertilizers and pesticides. Studies demonstrate 20-50% reduction in chemical fertilizer requirements when nano-bioinoculants are used, leading to decreased environmental pollution, lower greenhouse gas emissions, and improved soil and water quality.

These combined roles make nano-bioinoculants indispensable tools for developing resilient, productive, and environmentally sustainable agricultural systems.

5. Benefits of Nano-bioinoculants in Modern Agriculture

Nano-bioinoculants offer transformative benefits for sustainable agriculture by enhancing biological processes while reducing environmental impact. Their advanced delivery systems provide unprecedented precision and efficiency in crop production, making them valuable tools for addressing global food security challenges.

Benefits of Nano-bioinoculants

Aspect	Contribution of Nano-bioinoculants
Crop Yield	15-40% increase in productivity through enhanced nutrient availability and plant health
Fertilizer Efficiency	20-50% reduction in synthetic fertilizer requirements through improved biological processes
Environmental Impact	Significant reduction in chemical runoff, soil pollution, and greenhouse gas emissions
Soil Health	Enhanced microbial diversity, improved soil structure, and increased organic matter content
Cost Effectiveness	Reduced input costs and improved profit margins for farmers
Climate Resilience	Better drought tolerance, stress resistance, and adaptation to climate variability

6. Future Prospects and Recommendations

The future of nano-bioinoculants lies in continued innovation, widespread adoption, and integration with precision agriculture technologies. Strategic development and implementation can revolutionize global food production while ensuring environmental sustainability and climate resilience (Sharma et al. 2024).

6.1 Research and Development Priorities

Future research should focus on developing crop-specific nano formulations tailored to different agro-climatic conditions. Multi-functional nano consortia combining nitrogen fixation, phosphorus solubilization, growth promotion, and biocontrol properties need to be developed. Additionally, smart nano systems with environmental responsiveness and self-regulating release

mechanisms should be prioritized for next-generation products.

6.2 Technology Transfer and Commercialization

Successful commercialization requires establishing robust supply chains, quality assurance systems, and distribution networks. Public-private partnerships can accelerate technology transfer from research institutions to commercial entities. Pilot-scale production facilities should be established in different regions to ensure product accessibility and affordability for smallholder farmers.

6.3 Regulatory Framework Development

Clear regulatory guidelines for nano-bioinoculant registration, safety assessment, and quality standards need to be established. International harmonization of regulations can facilitate global trade and technology transfer. Risk assessment protocols specific to nano-enhanced biological products should be developed to ensure environmental and human safety.

6.4 Farmer Education and Capacity Building

Comprehensive training programs should be implemented to educate farmers about nano-bioinoculant technology, application methods, and benefits. Demonstration plots, field schools, and farmer-to-farmer learning networks can accelerate adoption. Extension services need to be equipped with technical knowledge and resources to support farmers in implementing these technologies.

7. Conclusion

Nano-bioinoculants represent a transformative technology that bridges the gap between traditional biological farming and modern precision agriculture. By combining the benefits of beneficial microorganisms with the precision of nanotechnology, these innovative formulations offer sustainable solutions for enhancing crop productivity while protecting environmental resources.

The evidence from global field trials demonstrates the significant potential of nano-bioinoculants to increase yields, reduce chemical inputs, and improve soil health. As production technologies advance and costs decrease, these microscopic tools are positioned to play a crucial role in feeding the growing global population while maintaining ecological balance. The successful implementation of nano-bioinoculant technology requires coordinated efforts from researchers, policymakers, industry partners, and farming communities. With appropriate support and strategic deployment, nano-bioinoculants can contribute significantly to global food security, climate change mitigation, and sustainable agricultural development.

References:

Arora, Pankaj K., Shivam Tripathi, Rishabh Anand Omar, Amit Singh, Prerna Chauhan, Vijay Kumar Sinhal, Alok Srivastava, Sanjay Kumar Garg, and Vijay Pal Singh. 2024. "Next-Generation Fertilizers: The Impact of Bionanofertilizers on Sustainable Agriculture." *Microbial Cell Factories* 23: 254. <https://doi.org/10.1186/s12934-024-02528-5>.

Chand, Subhash, Sunita Devi, Megha Sharma, and Kumari Manorma. 2025. "Nano-Biofertilizers for Sustainable Agriculture." *Communications in Soil Science and Plant Analysis* 56 (9): 1411–1429. <https://doi.org/10.1080/00103624.2025.2452998>.

Garg, Diksha, Kandi Sridhar, Baskaran Stephen Inbaraj, Prince Chawla, Manikant Tripathi, and Minaxi Sharma. 2023. "Nano-Biofertilizer Formulations for Agriculture: A Systematic Review on Recent Advances and Prospective Applications." *Bioengineering* 10 (9): 1010. <https://doi.org/10.3390/bioengineering10091010>.

Sodhi, G. K., T. Wijesekara, K. C. Kumawat, P. Adhikari, K. Joshi, S. Singh, B. Farda, R. Djebaili, E. Sabbi, F. Ramila, D. Sillu, G. Santoyo, S. de los Santos-Villalobos, A. Kumar, M. Pellegrini, and D. Mitra. 2025. "Nanomaterials–Plants–Microbes Interaction: Plant Growth Promotion and Stress Mitigation." *Frontiers in Microbiology* 15:

1516794.https://doi.org/10.3389/fmicb.2024.1516794.

Upadhayay, Viabhav Kumar, Marcelo Carvalho Minhoto Teixeira Filho, Jalal Jalal, and Parul Chaudhary. 2025. "Nano-Bioinoculants for Sustainable Agriculture: Potentially, Limitations, and Economic Aspects." In *Nano-Bioinoculants*, 117–144. Elsevier. https://doi.org/10.1016/B978-0-443-22285-6.00005-7.

Zafar, Sadia, Maria Bilal, Muhammad Fraz Ali, Athar Mahmood, Jureerat Kijssomporn, Ling Shing

Wong, Harshini M, Vikas Kumar, and Saqer S. Alotaibi. 2024. "Nano-Biofertilizer an Eco-Friendly and Sustainable Approach for the Improvement of Crops under Abiotic Stresses." *Environmental and Sustainability Indicators* 24: 100470.https://doi.org/10.1016/j.indic.2024.100470.

Agri Fashion: Fields to Fabric

Anushka Jaiswal

Lovely Professional University, Punjab

Agri-Fashion: Fields to Fabric

When we think of farming, we typically envision food crops like rice or corn, not couture. Yet, a quiet but powerful shift is underway where the agricultural sector is providing the raw materials for the fashion world. This movement, known as Agri-Fashion, transforms what was once considered farm waste—from leaves to mushroom roots—into eco-friendly fabrics, sustainable leathers, and chic accessories.

This innovative intersection of agriculture and design is not only pushing the fashion industry toward greater sustainability but also establishing new, profitable ventures for farmers.

Piñatex: Pineapple Leaves Take the Stage

After a pineapple harvest, the plant's fibrous leaves are typically discarded or burned. Now, these leaves are being processed into a durable, non-woven textile called Piñatex. This material is a sustainable and cruelty-free alternative to traditional leather, and major brands like Hugo Boss and H&M have already incorporated it into their product lines for shoes and bags. For farmers, this transforms a byproduct into a valuable new commodity, increasing their income while helping to reduce environmental pollution.

Mycelium Leather: The Underground Revolution

Mushrooms are more than just a culinary delight. Scientists are now cultivating the dense, root-like structure of fungi, known as mycelium, into sheets that closely resemble animal leather. This mycelium leather is lightweight, strong, and completely biodegradable. It provides a luxurious and ethical substitute for animal hides, making it an attractive option for high-end brands. Imagine fashion accessories that quite literally sprout from

agricultural residues, creating a truly natural product from start to finish.

Weaving a Sustainable Future

The innovations don't stop with pineapples and mushrooms. Across the globe, various other agricultural byproducts are being converted into textiles. Banana stems are spun into soft but durable fabrics, coconut husks are processed into coir fiber for weaving, and even lotus stems are being used to create fine, exquisite silks. These examples demonstrate that the potential for Agri-Fashion is vast and untapped. Instead of being seen as waste, these residues can become the core of new, sustainable products that appeal to environmentally conscious consumers.

Why Agri-Fashion is Crucial

The fashion industry has a significant environmental footprint, from the water and chemicals used in textile production to the pollution from synthetic fibers. Traditional leather manufacturing, in particular, contributes to deforestation and chemical waste.

Agri-Fashion provides a compelling and necessary solution:

- Eco-Friendly: It reduces reliance on plastics and other pollutants.
- Animal-Friendly: It offers high-quality leather alternatives without harming animals.
- Farmer-Friendly: It creates additional revenue streams for farmers, empowering rural economies.

As global awareness of climate change grows, farm-based fashion is not just a trend—it's an essential part of a more sustainable future.

The Road Ahead

For this movement to truly flourish, significant investments are needed in research, technology, and rural processing facilities. Governments and startups must collaborate to establish the infrastructure required to turn farm residues into viable fashion materials. Consumers also have a crucial role to play by making conscious purchasing decisions that support sustainability.

Every choice we make to buy an eco-friendly bag or pair of shoes sends a powerful message to the industry, proving that style and sustainability can go hand in hand.

Conclusion: The New Farmers of Fashion

Agri-Fashion is far more than a passing fad; it's a transformative movement that links agriculture and design. From pineapple leaves becoming chic handbags to mushroom mycelium replacing traditional leather, farm waste is literally reshaping the future of style. In the coming years, we may come to see farmers not only as food producers but as vital partners in creating the fabrics of tomorrow.

Vertical Farming: A Sustainable Solution for Future Agriculture

Ashish Maulekhi

Student, Department of Agriculture, Lovely Professional University, Punjab

Vertical farming is basically just farming that goes upward in layers instead of out on fields. In cities, this means farms in tall buildings, stacked on rooftops or even in containers. These indoor farms often skip soil and use water-based systems. One article explains that vertical farms “use hydroponics, aeroponics, and AI to produce food more efficiently, using less water, no soil, and minimal land space”. So, they can grow vegetables all year, even when the weather is bad outside, using technology like LED grow lights that “mimic natural sunlight”.

Vertical farming cuts down water use a lot – studies say up to 95% less water than regular farming. We save space since crops are stacked instead of wide fields. Using less land and water leaves more for other needs. Also, if farms are right in the city, food travels shorter distances – that means fewer trucks and less carbon from transport. All this helps tackle water shortages and climate change.

Tech is huge in vertical farming. Nutrient-rich water (hydroponics) or mist (aeroponics) feed plants without soil. Farms use sensors and IoT gadgets. As one article notes, IoT “allows hydroponic systems to be remotely monitored and controlled via smartphones”, so a farmer can check water and nutrients on an app. This automation

means crops get just what they need, and nothing goes to waste.

In India, the vertical farming scene is still young but growing. A Delhi startup called Pindfresh helps people grow veggies on balconies using hydroponics and other soilless methods; they say these farms need “less space” and “lesser water”. In Hyderabad, Urban Kisan has built modular vertical farms in city buildings. Even big companies are joining in: Bangalore’s Clover raised \$5.5 million in 2021 to expand indoor farming across India. These projects show how our cities can produce fresh, pesticide-free greens close to home, boosting local food security.

For me as an agriculture student, vertical farming feels like a bridge between technology and tradition. It’s exciting that innovation can help solve problems like water shortage and make safe food. Of course, it’s still new in India and can cost a lot at first, but with more support it could really grow. Maybe one day my family farm will even use these methods. For now, it’s inspiring to see young entrepreneurs in India pushing these ideas. Our future meals might come from farms right in our own cities!

Dairy Farming as an Enterprise in India

Maitri Mishra

Agriculture has been the mainstay of Indian economy for centuries, giving employment to a sizeable portion of the rural population. Besides growing crops, rearing livestock has been a contributory factor in maintaining rural households. Among several livestock-based enterprises, dairy farming holds a special position in India. It is not only a rural profession but has now turned into a remunerative industry contributing largely to the national economy, rural employment, and nutrition security. India is the world's largest producer of milk, with over 23% of global milk production. Expansion in the dairy industry is a demonstration of the deep roots of dairy farming among Indian culture, rural livelihoods, and entrepreneurial activity.

Significance of Dairy Farming in India

1. Economic Contribution – Dairy farming accounts for approximately 5% of India's national GDP and around 25% of agricultural GDP. It generates steady cash income for rural families, particularly small and marginal farmers who could lack consistent income from crop cultivation.
2. Generation of Employment – Over 80 million farm households in rural areas are involved in milk production, with women having a predominating role in activities such as feeding, cleaning, and milking. Dairy farming hence provides inclusive growth as it empowers rural women.
3. Nutrition Security – Milk is a good source of protein, calcium, vitamins, and fat. Increased availability of milk daily provides well-balanced nutrition to the increasing population of India. Curd, paneer, butter, and ghee are integral parts of Indian diets.
4. Social and Cultural Importance – Cows and buffaloes are not just milk providers but also a constituent of India's festivals, rituals, and

traditions. Dairy items are a crucial part of religious offerings and traditional food.

Dairy Farming as an Enterprise

Dairy farming is no longer a domestic activity. With modernization, it has become a well-organized enterprise demanding scientific management, investment in capital, and business planning. The farmer is now contemplating dairy as a viable business proposition that can generate income throughout the year.

Consistent demand for milk: In contrast to seasonal crops, milk demand is daily and ongoing.

Short production cycle: Buffaloes and cows offer milk twice a day with continuous returns.

Market linkages: Cooperatives (such as Amul) and private dairies' emergence guarantee guaranteed procurement.

Value addition: Entrepreneurs can venture into processing milk into products like cheese, ice cream, yogurt, flavoured milk, etc., making it more profitable.

Role of Dairy Cooperatives

India's cooperative movement has turned dairy farming into a thriving business. The Gujarat state's Amul model stands as the most shining example, which empowered farmers by offering good prices, veterinary care, and robust supply chains. Presently, co-operatives bring milk from millions of farmers to the urban consumers after processing. This has minimized the contribution of middlemen and provided stable returns to rural producers.

Entrepreneurial Ventures in Dairy Farming

1. **Production and Marketing of Milk** – Sale of milk directly to local consumers, restaurants, hotels, or through cooperatives.

2. Dairy Processing Units – Establishing small plants to manufacture paneer, ghee, butter, cheese, curd, and packaged milk.

3. Value-Added Products – Flavoured milk, probiotic yogurt, ice creams, and dairy sweets are in high demand in urban areas.

4. Organic Dairy Farming – Due to increasing health awareness, organic production of milk from chemical-free feed is increasingly popular.

5. By-Products Utilization – Cow dung can be utilized for vermicomposting, biogas, and organic manures. Cow urine is also used in organic farming and Ayurvedic medicines.

Government Initiatives for Dairy Farming

- ✓ **National Dairy Development Board (NDBB)** – Encourages modern dairy infrastructure and training of farmers.
- ✓ **Operation Flood** – Popularly called the "White Revolution," it made India the globe's largest milk producer.
- ✓ **Rashtriya Gokul Mission** – Emphasizes development of native cattle breeds.
- ✓ **Dairy Entrepreneurship Development Scheme (DEDS)** – Offers financial support for setting up dairy units.
- ✓ **Digital Dairy Initiatives** – Apps and online platforms for procurement of milk, price data, and veterinary services.

Problems of Dairy Farming

1. Feed is costly: Fodder and feed are costly and lower profit margins.
2. Disease in animals: Diseases, poor veterinary services, and a lack of vaccination impact productivity.
3. Low productivity of domestic breeds: Most Indian breeds of cattle have low milk production as against exotic breeds.
4. Infrastructure lags: Cold storage facilities, transport systems, and advanced processing units are lacking.

5. Fluctuating market price: Milk prices fluctuate frequently, and this impacts farmer earnings.

6. Training and awareness: Most small farmers continue to practice traditional methods and are not scientifically aware of dairy management.

Future of Dairy Farming in India

- ✓ Population growth and urbanization are boosting demand for milk and milk products.
- ✓ Increased health awareness is generating demand for protein-enriched, probiotic, and organic milk products.
- ✓ Potential for exports is available for ghee, butter, and milk powder.
- ✓ Technological innovations like artificial insemination, embryo transfer, accuracy feeding, and automated milking machines will increase productivity.
- ✓ Dairy farming liberates women and promotes rural development.

Conclusion

Indian dairy farming has come a long way from being a traditional vocation to a full-fledged business with great potential. It offers employment security, nutritional provision, and entrepreneurial opportunities to crores of individuals. With support from government efforts, cooperatives, and private sector entities, the dairy industry has seen unprecedented growth ever since the White Revolution. Yet, issues such as low productivity, increasing feed prices, and absence of up-to-date infrastructure must be tackled. If scientific methods, entrepreneurship, and technology upgradation are encouraged, dairy farming can emerge as one of India's most lucrative and sustainable businesses. It promises to deliver rural prosperity, women empowerment, and national food security while still being a source of pride for India as the globe's largest milk producer.

Carbon Capture and Climate Smart Agriculture

Sagar Kumar Jha
Lovely Professional University

Carbon Capture and Climate-Smart Agriculture are pivotal strategies in modern sustainable farming aimed at mitigating climate change while enhancing food security and farm resilience. These approaches focus on reducing greenhouse gas emissions, increasing carbon sequestration in agricultural soils, and adapting farming systems to the changing climate.

Understanding Carbon Capture in Agriculture

Carbon capture in agriculture involves practices that increase the storage of carbon dioxide (CO₂) from the atmosphere into plants and soils. Healthy soils rich in organic matter act as significant carbon sinks, helping to reduce atmospheric CO₂ concentrations. Techniques such as cover cropping, agroforestry, reduced tillage, and organic amendments enhance soil carbon stocks. Additionally, innovations like precision fertilization reduce nitrous oxide emissions—a potent greenhouse gas—linked to fertilizer use.

What is Climate-Smart Agriculture?

Climate-smart agriculture (CSA) is an integrated approach that seeks to simultaneously improve agricultural productivity, build resilience to climate variability, and reduce greenhouse gas emissions. CSA practices are tailored to local agro-ecological contexts and socio-economic conditions. They include diversified cropping systems, improved water management, conservation agriculture, and sustainable livestock management. By balancing productivity with environmental health, CSA contributes to achieving food security under climate change.

Benefits of Carbon Capture and Climate-Smart Agriculture

- Mitigating Climate Change:** Enhanced carbon sequestration in soils and biomass

reduces net greenhouse gas emissions from the agriculture sector. CSA practices further lower emissions associated with energy use, fertilizers, and livestock.

- Improving Soil Health:** Increasing soil organic carbon improves soil structure, nutrient cycling, and moisture retention, which supports crop growth and resilience against extreme weather events.
- Ensuring Sustainable Yields:** By making farms more resilient to droughts, floods, and pests, these practices help stabilize and potentially increase yields in the face of climate shocks.
- Biodiversity Conservation:** Agroforestry and diversified crop rotations promote biodiversity, which contributes to ecosystem services like natural pest control and pollination

Recent Innovations and Research

Research institutions like ICARDA and collaborations worldwide focus on developing low-energy irrigation systems, optimized crop diversification, and precision farming technologies that reduce energy use and emissions. For example, ultra-low-energy drip irrigation integrated with renewable energy has significantly cut water and carbon footprints in dryland farming. Crop diversification techniques such as relay cropping with legumes reduce synthetic nitrogen fertilizer needs by biologically fixing nitrogen, thus lowering nitrous oxide emissions.

Challenges and the Way Forward

Adoption barriers include financial costs of new technologies, knowledge gaps among farmers, and the need for supportive policies and infrastructure. Scaling carbon capture and CSA requires investments in research, capacity building, and market incentives. Monitoring and measurement

technologies are essential for verifying carbon sequestration benefits to facilitate carbon credit markets. Digital tools like AI and IoT can enhance decision-making and adoption efficiency.

Conclusion

Carbon capture and climate-smart agriculture are vital components of the global effort to achieve net-zero emissions and sustainable food systems. By embracing these strategies, agriculture can

transform from a major source of greenhouse gases to a key part of the climate solution. Continued innovation, policy support, and stakeholder collaboration will be crucial in unlocking their full potential to secure food and a livable planet for future generations.

The Rise of Regenerative and Conservation Agriculture

Ankit Suman

Lovely Professional University, Punjab

Regenerative and conservation agriculture represent a paradigm shift in farming practices that prioritize restoring the health of soil, biodiversity, and ecosystems while enhancing farm productivity and resilience. These approaches aim not only to sustain agricultural output but actively improve the land and environment over time. Their rise in recent years is driven by urgent global challenges such as climate change, soil degradation, and biodiversity loss.

What is Regenerative Agriculture?

Regenerative agriculture is a holistic set of practices designed to rebuild soil organic matter, enhance soil microbial diversity, and improve water retention and nutrient cycling. Key techniques include no-till or reduced tillage, cover cropping, diverse crop rotations, agroforestry, and managed grazing. By strengthening biological processes in the soil and ecosystem, regenerative agriculture promotes both long-term productivity and ecological health.

Conservation Agriculture: A Complementary Approach

Conservation agriculture shares many principles with regenerative farming, focusing on minimal soil disturbance, permanent soil cover, and crop diversification to protect and enhance soil function. It emphasizes reducing erosion and chemical inputs while improving soil structure and organic content. Together, regenerative and conservation approaches offer complementary tools to transform agricultural landscapes into resilient and fertile systems.

Benefits Driving the Rise of Regenerative and Conservation Agriculture

1. Soil Health Restoration

At the core of these approaches is the regeneration of degraded soil. Practices like cover crops and organic amendments increase soil organic matter, enriching microbial life and improving fertility. This boosts moisture retention, reduces erosion, and supports healthy root development. Studies show soil organic matter can increase by over 20% within five years under regenerative care, enhancing crop stability and reducing the need for synthetic fertilizers.

2. Climate Change Mitigation and Adaptation

Healthy soils act as significant carbon sinks, sequestering atmospheric CO₂ and reducing greenhouse gas emissions. Regenerative agricultural systems also build drought resilience and buffer crops from climate shocks by maintaining soil moisture and biodiversity. This dual role as mitigation and adaptation tool is crucial in reaching global climate targets and securing food systems under changing conditions.

3. Biodiversity Enhancement

Diversified crop rotations, agroforestry, and reduced pesticide use create habitats that support pollinators, beneficial insects, and other wildlife. This biodiversity underpins ecosystem services essential for pest control, nutrient cycling, and soil health. Increased genetic and species diversity also strengthens agricultural system resilience.

4. Economic Viability and New Opportunities

Regenerative and conservation agriculture reduce farmers' dependence on costly external inputs like chemical fertilizers and pesticides, leading to substantial savings. Stable and improved yields, access to premium markets for sustainably grown

produce, and emerging green job opportunities enhance farm profitability and rural economies. New jobs in ecological monitoring, agroforestry management, and farm advisory services are rapidly expanding in this sector.

5. Water Use Efficiency

Improved soil structure and organic matter increase water infiltration and retention, reducing irrigation needs. This leads to better drought tolerance and lower water stress on farms, vital in water-scarce regions.

Examples of Regenerative Practices

- Cover Cropping: Growing specific plants between main crops to protect soil, add nutrients, and disrupt pest cycles.
- No-Till Farming: Avoiding soil disturbance to maintain microbial communities and organic matter.
- Agroforestry: Integrating trees and shrubs into farmland to improve biodiversity and carbon storage.
- Managed Grazing: Rotationally grazing livestock to stimulate pasture growth and soil health.

Challenges and the Path Forward

Despite its potential, adoption of regenerative and conservation agriculture faces hurdles including

knowledge gaps, initial investment costs, and market access barriers. Scaling solutions requires supportive policies, extension services, scientific research, and technology innovation such as satellite monitoring and precision agriculture.

Conclusion

The rise of regenerative and conservation agriculture represents a hopeful shift toward sustainable, resilient food production systems that heal rather than harm the planet. By restoring soil health, enhancing biodiversity, and mitigating climate impacts, these approaches hold the key to feeding a growing population within environmental limits. As awareness and innovation grow, regenerative principles are poised to become foundational in global agricultural practices by and beyond 2025.

This transformative wave invites farmers, researchers, policymakers, and consumers to collaborate for a healthier future—where agriculture is part of the solution to global environmental challenges.

The Role of Precision Farming in Increasing Productivity

Ritika Pradhan

Lovely Professional University

Agriculture has always been very important for human civilization, giving us food, materials, and jobs for millions of people around the world. As the world's population is expected to reach 9 billion by 2050, there's a big need to grow more food without hurting the environment. Traditional farming methods, though important, often use resources inefficiently and don't produce enough. In recent years, precision farming has come up as a new way to solve these problems. By using technology with traditional farming, precision farming gives farmers tools to use resources better, cut waste, and grow more food in a sustainable way.

What is Precision Farming?

Precision farming is a modern farming method that uses technology, data, and advanced tools to give crops and soil exactly what they need, when they need it. It uses tools like GPS, GIS, sensors, drones, remote sensing, and AI. Unlike old ways of farming, where the whole field is treated the same, precision farming knows that different parts of a field may need different care. By adjusting farming practices to match these differences, farmers can grow more and work more efficiently.

Key Technologies in Precision Farming

1. GPS and GIS Mapping: GPS helps farmers create detailed maps of their fields with high accuracy. This helps track changes in soil, crop health, and harvest. GIS uses this data to make better decisions.
2. Remote Sensing and Drones: Drones and satellites take pictures from the air. These images help find out if crops are stressed, sick, or missing nutrients. This information helps farmers act quickly.
3. Soil and Crop Sensors: These tools measure things like soil moisture, temperature, and

nutrients. Crop sensors check the health and growth of plants and how much water they need.

4. Variable Rate Technology (VRT): This lets farmers apply things like water, fertilizer, and pesticide in different amounts in different parts of a field. This reduces overuse and saves money.
5. Data Analytics and AI: These tools help process a lot of data collected from sensors and drones. They give farmers useful information and predictions to help them manage crops better.

Role in Increasing Productivity

1. Efficient Resource Use: Precision farming makes sure resources like water, fertilizer, and pesticides are used only where needed. This saves money and reduces waste, making farming more efficient.
2. Better Crop Yields: By meeting the exact needs of plants and soil, farmers can grow more. For example, watering crops based on soil data helps avoid drought stress and improves growth.
3. Less Environmental Impact: Using fewer chemicals and less water helps protect the soil, water, and reduces harmful gases. This supports farming in a way that's good for the environment.
4. Quick Decision Making: Tools like sensors and drones help farmers see problems early, like pests or nutrient shortages. Acting fast stops damage and improves productivity.
5. Cost-Effective: Though starting with precision farming may cost a lot, the long-term savings from using fewer inputs and getting more output makes it a good investment.

Challenges in Adoption

Even though precision farming is helpful, there are challenges, especially in poorer countries:

- **High Costs:** Buying the equipment and learning how to use it is expensive, which can be hard for small farmers.
- **Not Enough Knowledge:** Some farmers don't know how to use the advanced tools.
- **Poor Infrastructure:** Rural areas may not have good internet or electricity, making it hard to use digital tools.
- **Data Concerns:** Using digital platforms raises worries about how safe and who owns the data.

Future Prospects

The future of precision farming looks bright as technology becomes cheaper and easier to get. Governments and companies are investing more in smart farming to ensure food security and

sustainability. New tech like 5G, IoT, and machine learning will help farmers make smarter choices. Working together, like sharing equipment, can help small farmers start using these technologies.

Conclusion

Precision farming is more than just new technology; it's a big change in how farming is done. By focusing on each part of a field instead of treating everything the same, it helps grow more food with less waste and less harm to the environment. While there are still challenges with cost and access, the long-term benefits are clear. As the world tries to feed more people while protecting natural resources, precision farming is a key part of the solution for a better, sustainable future.

Monk Fruit: The Sweet Revolution in Sustainable Farming

Saubhik Sarkar

Lovely Professional University, Punjab

A Natural Sweetener with Ancient Roots

With global consumers gravitating towards healthier, low-calorie living, Monk Fruit is taking centre stage. Cultivated in the foggy mountains of southern China, this tiny, green fruit has been utilized in traditional Chinese medicine for more than 800 years. It's now being touted as a natural, zero-calorie sweetener that may change the world of health and farming.

So, Just What is Monk Fruit?

Scientifically. Known as *Siraitia grosvenorii*, monk fruit—also referred to as Luo Han Guo—is part of the gourd family. The fruit's remarkable sweetness comes from mogrosides, compounds that are as much as 200 times sweeter than sugar. Unlike synthetic sweeteners that trigger high blood sugar levels, monk fruit extract is natural, calorie-free, and won't raise diabetics' or weight-conscious consumers' blood sugar.

Though still predominantly grown in certain regions of China, the potential of monk fruit as an income-generating high-value crop is now gaining attention around the world. For farmers in subtropical and tropical countries, it is a silver bullet for diversification of their farm incomes.

Optimum Growing Conditions:

- Climate:** Frost-free, warm, humid
- Soil:** Slightly acidic to neutral with good drainage
- Growth Habit:** A perennial vine that needs support structures or trellises

Key Considerations:

- Needs frequent pruning and pest control

- Altitude and day length can affect flowering and fruiting
- Fruits to be harvested should be processed or dried immediately for optimal value
- Agricultural and Economic Value
- Strong Market Demand

Monk fruit-based sweeteners have seen soaring demand in Western markets, particularly the U.S., Canada, and Europe, driven by health-friendly food trends.

Challenges to Keep in Mind

Albeit full of promise, monk fruit is not without challenges:

- Limited indigenous knowledge and availability of planting materials
- High upfront investment in trellising and infrastructure
- Requires proper post-harvest handling and processing expertise
- Nevertheless, with the right guidance and collaborations, these challenges can be addressed, particularly in areas with favourable agro-climatic conditions.

Health and Sustainability Hand in Hand

In contrast to certain artificial sweeteners associated with health issues, monk fruit is seen as safe, natural, and eco-friendly. Not only is it a healthier option for the consumer, but it also supports sustainable agricultural methods through the promotion of crop diversity and value farming.

Last Thoughts: Will Monk Fruit Become the Next Big Thing?

For progressive farmers, Agri-startups, and rural cooperatives, monk fruit presents a unique convergence of market potential, sustainability, and health benefits. As global demand grows and consumer acceptability of clean-label products

continues to rise, monk fruit may well be the next cash crop in health-oriented agriculture.

Effect of Synthetic Residues in Soil

Bhumika Mehra

Lovely Professional University, Punjab

Synthetic residues—mainly chemical fertilizers and pesticides—have significantly contributed to global agricultural development by improving crop yields. However, their long-term accumulation in soil has raised serious concerns. Continuous usage affects soil quality, reduces biodiversity, and disturbs natural soil processes that are essential for sustainable farming.

Sources of Synthetic Residues

Synthetic residues enter the soil primarily through:

- **Fertilizers:** Nitrogen (N), Phosphorus (P), and Potassium (K) formulations applied for plant growth.
- **Pesticides and Herbicides:** Chemicals used to control insects, weeds, and crop diseases.
- **Industrial Runoff:** Heavy metals, solvents, and plastic-related compounds that mix with soil due to industrial discharges.

Once deposited, these compounds become part of the soil environment, either through regular agricultural practices or accidental contamination.

Influence on Soil Chemistry

Nutrient Imbalance

Excess application of fertilizers disturbs the natural balance of nutrients. While crops may initially benefit, over time, micronutrient deficiencies appear, lowering crop quality and soil productivity.

Soil Acidification

Nitrogen-rich fertilizers often reduce soil pH, which decreases the availability of essential minerals and hampers the activity of beneficial microbes. Acidic conditions also impair the soil's natural fertility.

Effects on Soil Microbial Communities

Decline in Microbial Diversity

Agrochemicals can suppress beneficial soil microbes responsible for nutrient cycling, organic matter breakdown, and natural disease control. Reduced microbial diversity weakens soil resilience and allows harmful pathogens to thrive.

Enzyme Disruption

Residues of synthetic chemicals interfere with soil enzymes essential for key processes like nitrification, phosphorus release, and mineralization. This slows nutrient recycling and weakens soil's natural regeneration ability.

Soil Structure and Physical Properties

Compaction and Reduced Aeration

Long-term chemical use often leads to compaction, limiting water infiltration, air movement, and root penetration. This increases erosion and reduces long-term soil fertility.

Decline in Water Retention

Chemical residues prevent the formation of stable soil aggregates, reducing the soil's ability to hold moisture. Poor water retention makes crops more vulnerable to drought stress.

Impact on Soil Organic Matter (SOM)

Unlike organic inputs, synthetic fertilizers and pesticides generally do not build up SOM. In some cases, they even accelerate its breakdown. Lower SOM levels reduce the soil's nutrient-holding capacity and its ability to store carbon, weakening resilience against climate change.

Long-Term Environmental Challenges

Bioaccumulation and Food Chain Risks

Residues often leach into nearby water systems, eventually entering the food chain. Over time, toxic substances accumulate in animals and humans, creating serious health hazards.

Evolution of Resistance

Excessive chemical use encourages pests and weeds to develop resistance, leading to a cycle of higher doses and stronger formulations, further worsening soil and ecosystem damage.

Evidence from Research

Recent global studies reveal that agricultural soils frequently contain traces of multiple pesticides, some of which remain active for several years. Research shows that heavy pesticide exposure reduces beneficial microbes, negatively impacts nitrogen fixation, and suppresses the growth of vital mycorrhizal fungi.

Sustainable Solutions and Alternatives

Organic Inputs and Biofertilizers

Using compost, manure, and biofertilizers can rebuild soil health by enriching organic matter, stimulating microbial activity, and improving soil structure. Biofertilizers also support nutrient cycling and enhance disease resistance.

Agroecological Practices

- Crop Rotation: Helps break pest cycles and reduces dependency on chemicals.

- Agroforestry: Combines trees with crops, improving soil health and capturing carbon.
- Cover Crops: Protect soil from erosion, recycle nutrients, and increase SOM.

Regulatory and Technological Measures

Stricter policies on chemical usage, improved risk assessments, and adoption of precision agriculture technologies can reduce unnecessary input application and lower residual impacts.

Conclusion

Synthetic residues have undeniably played a role in boosting agricultural yields, but their long-term effects on soil health are deeply concerning. Continuous use leads to nutrient imbalances, microbial decline, and structural degradation, which threaten the sustainability of farming systems. Shifting towards balanced input strategies, organic matter enrichment, and climate-smart agricultural practices offers a pathway to restore soil fertility and secure food production for the future.

This study highlights the diverse impacts of synthetic residues on soil health and emphasizes the urgent need for sustainable agricultural transitions.

Vertical Farming and Hydroponics as Future

Bismay Mishra
Lovely Professional University, Punjab

The world's population is expected to go past 9 billion by 2050, which means food demand will rise a lot. At the same time, farmland is shrinking because of cities growing, soil getting worse, and climate change. Traditional ways of farming are not enough to feed people in a sustainable way. In this situation, vertical farming and hydroponics are coming up as new ideas that can help grow more food with fewer resources and in city areas.

What is Vertical Farming?

Vertical farming is a way to grow crops in layers, often inside buildings, warehouses, or special greenhouses.

Instead of spreading out over fields, plants grow upwards, which uses less space. This method uses controlled lights, climate controls, and often soilless techniques like hydroponics, aeroponics, or aquaponics.

What is Hydroponics?

Hydroponics is a way to grow plants without soil. Plants get their nutrients from water that has minerals in it. They can be grown indoors or outdoors and often work well with vertical farming. This method gives plants exactly what they need, makes them grow faster, and uses much less water than traditional farming.

Benefits of Vertical Farming and Hydroponics

1. Efficient Land Use

Vertical farming grows food in cities, closer to where people live. This cuts down on transport costs and lowers the carbon footprint. It makes farming possible in places where the soil isn't good or there isn't much land.

2. Water Conservation

Hydroponics uses up to 90% less water than regular farming. Water is reused in the system, which means less waste.

3. Year-Round Production

With controlled environments, crops are not affected by weather, bugs, or the seasons. This leads to a steady and reliable food supply all year.

4. Higher Yields and Faster Growth

In hydroponics, plants get nutrients directly, so they grow faster. Growing crops in layers means more food can be grown in the same space as open fields.

5. Reduced Use of Chemicals

Because farming happens indoors, there's less need for pesticides and herbicides, which makes the food healthier.

6. Urban Food Security

Growing food in cities reduces the need for long supply chains and helps people get fresh food even in busy areas.

Challenges in Adoption

Even though vertical farming and hydroponics offer a lot, there are some issues:

- **High Initial Costs:** Setting up the necessary lights, sensors, and water systems can be expensive.
- **Energy Consumption:** Using artificial lights and climate control uses a lot of electricity.
- **Technical Knowledge:** Farmers and business people need training to use these advanced systems.
- **Scalability:** Big-scale use is still limited because of costs and the need for good infrastructure.

Future Prospects

As renewable energy, automation, and AI improve, vertical farming and hydroponics could become more cost-effective and sustainable.

Governments and companies are investing in these technologies to secure food in cities and places affected by climate change. With better LED lights, smart sensors, and efficient water systems, vertical farms might become a normal part of city life.

Conclusion

Vertical farming and hydroponics are more than just new ways to grow food they are solutions for the future of food security.

These technologies save land, water, and reduce harm to the environment. They offer a way to grow food in the face of rapid city growth and climate change. Although there are challenges, ongoing research, funding, and teamwork could make these methods the mainstay of food production in the years to come.

Regenerative Agriculture: The Future of Sustainable Farming

Shubhra Sharma

Lovely Professional University

Regenerative agriculture is an innovative approach to farming that aims not only to sustain but to restore and enhance natural ecosystems. Unlike conventional practices that often deplete soil and resources, regenerative methods focus on rebuilding soil fertility, increasing biodiversity, improving water cycles, and capturing carbon from the atmosphere. Techniques such as crop rotation, cover cropping, reduced tillage, agroforestry, and holistic grazing help create resilient farming systems that benefit both farmers and the environment. This approach offers solutions to pressing global challenges, including climate change, soil degradation, and food insecurity. By lowering input costs, boosting productivity, and promoting ecological balance, regenerative agriculture represents a transformative pathway toward sustainable food production and environmental stewardship. It is not just a farming method but a vision for the future, ensuring healthier soils, stronger communities, and a more stable planet for generations to come.

Introduction

Industrial agriculture has made tremendous strides in providing billions of people with food, but at a significant cost: soil loss, biodiversity loss, and increased greenhouse gas emissions. To counter this, scientists, policymakers, and farmers are increasingly turning to regenerative agriculture, a comprehensive approach that restores ecosystems while producing profitable food.

What is Regenerative Agriculture?

Regenerative agriculture is more than just sustainability. Rather than sustaining existing conditions, it actively enhances soil health, increases biodiversity, and enhances resilience to climate change. It fundamentally approaches farms as living systems where soil, plants, animals, and people live in harmony.

Principles of Regenerative Agriculture:

- 1. Cover Cropping** – Planting crops such as legumes or grasses between primary crops to cover and enrich the soil.
- 2. Crop Rotation** – Rotating crops seasonally to avoid nutrient loss and pest accumulation

3. Reduced or No-Tillage Farming – Reducing soil disturbance to preserve structure and microbial life.

4. Agroforestry – Incorporating trees with crops or livestock for shade, carbon sequestration, and biodiversity.

5. Organic Inputs – Utilizing compost, manure, and biofertilizers rather than chemical fertilizers.

6. Holistic Grazing – Rotating livestock to simulate natural herd movement, revitalizing grasslands.

Regenerative Agriculture Benefits:

- Soil Health Restoration:** Nutrient- and water-holding capacities of healthy soils increase, leading to higher yields.
- Carbon Sequestration:** Cover cropping, agroforestry, and other practices store atmospheric CO₂.
- Climate Resilience:** Farms are less vulnerable to droughts, floods, and heat stress.
- Economic Benefits:** Reduced input expenses, enhanced long-term productivity, and possible carbon credit income.
- Biodiversity Conservation:** Supports habitats for pollinators and beneficial organisms.

Global Relevance:

Governments worldwide are beginning to recognize regenerative agriculture as a solution to global warming and food insecurity. Large food corporations are committing to using ingredients from regenerative farms, while governments consider incentives for farmers adopting such methods.

Challenges in Implementation:

- Transition Costs in Initial Years: Farmers could encounter lower yields in the initial years.
- Lack of Awareness: Regenerative practices are not known to many communities.
- Policy Gaps: Governments need to create supportive frameworks and subsidies.

Conclusion:

Regenerative farming is not just a method of farming; it is a revolution towards healing the earth and nourishing its people. Through the repair of soil, water conservation, and carbon sequestration, it offers a world where agriculture can be productive and sustainable. For the world to achieve its climate and food security targets, regenerative farming needs to transition from being an alternative to a mainstream approach.

Soil Health Management for Sustainable Crop Production

Yash

Soil health is the foundation of sustainable crop production, ensuring long-term agricultural productivity while maintaining ecological balance. Healthy soils support nutrient cycling, water retention, microbial activity, and carbon sequestration. However, intensive farming practices, overuse of chemical fertilizers, and soil erosion have led to the degradation of soil quality. This article discusses soil health management practices such as organic amendments, crop rotation, integrated nutrient management, and conservation agriculture that can restore and sustain soil fertility, ensuring sustainable food production for the future.

Introduction

Soil is a living system and a vital natural resource that directly influences agricultural productivity. The concept of soil health refers to the soil's ability to function as a dynamic ecosystem that sustains plants, animals, and humans. Sustainable crop production requires maintaining soil fertility, structure, and biological activity over the long term. However, challenges such as soil erosion, salinity, nutrient depletion, and pollution are threatening the ability of soils to produce crops sustainably. Therefore, soil health management is crucial for meeting the increasing food demand of a growing population while minimizing environmental degradation.

Main Body

1. Importance of Soil Health: Healthy soil ensures nutrient availability, efficient water use, enhanced microbial activity, and resistance against pests and diseases. It is the basis of sustainable agriculture.
2. Factors Affecting Soil Health:
 - Excessive use of chemical fertilizers and pesticides
 - Soil erosion due to deforestation and improper land use
 - Over-irrigation leading to salinity and alkalinity
 - Decline in soil organic matter and microbial diversity

3. Soil Health Management Practices:

- a. Organic Amendments: Adding farmyard manure, compost, and green manure improves soil organic matter, structure, and microbial activity.
- b. Crop Rotation and Diversification: Rotating cereals with legumes improves soil nitrogen levels and breaks pest cycles.
- c. Integrated Nutrient Management (INM): Combining organic and inorganic sources of nutrients ensures balanced and sustainable fertility.
- d. Conservation Agriculture: Practices like zero tillage, mulching, and cover crops reduce soil erosion and enhance water retention.
- e. Use of Biofertilizers: Microbial inoculants such as Rhizobium, Azotobacter, and Mycorrhiza promote nutrient cycling and soil health.

4. Benefits of Soil Health Management:

- Improved crop yield and quality
- Reduced dependency on chemical fertilizers
- Enhanced resilience to climate change
- Long-term sustainability of farming systems

Conclusion

Soil health management is essential for sustainable crop production and environmental protection. By adopting practices such as organic amendments, crop diversification, integrated nutrient

management, and conservation agriculture, farmers can restore degraded soils and improve their productivity. Healthy soils not only ensure food security but also support ecological balance, making them a cornerstone of sustainable development.

References

1. Lal, R. (2020). Soil health and climate change: An overview. *Soil and Tillage Research*, 204, 104736.
2. FAO. (2017). Voluntary guidelines for sustainable soil management. *Food and Agriculture Organization of the United Nations*.
3. Brady, N.C., & Weil, R.R. (2019). *The Nature and Properties of Soils*. Pearson Education.
4. Singh, R.P., & Prasad, S. (2018). Soil fertility and nutrient management. *Indian Journal of Agronomy*, 63(2), 179-186.

Water Management Strategies in Agriculture: Drip and Sprinkler Irrigation

Ankit

Water is one of the most critical resources for agricultural production, yet its availability is becoming increasingly limited due to population growth, climate change, and over-exploitation. Efficient irrigation methods such as drip and sprinkler irrigation are emerging as vital strategies to conserve water and improve crop yields. These methods ensure precise water application, reduce evaporation losses, and enhance nutrient use efficiency. This article explores the importance, principles, advantages, and limitations of drip and sprinkler irrigation as sustainable water management strategies in modern agriculture.

Introduction

Water plays a vital role in agriculture, as it is required for seed germination, nutrient absorption, photosynthesis, and overall crop growth. However, conventional methods such as flood irrigation often result in significant water wastage, soil erosion, and reduced efficiency. With increasing concerns over water scarcity, adopting modern irrigation technologies like drip and sprinkler irrigation has become essential. These systems are designed to deliver water directly to the root zone or through controlled spray, ensuring maximum utilization of water resources. Such strategies contribute to higher water productivity and long-term sustainability in farming.

Main Body

1. Importance of Efficient Water Management:

Efficient irrigation systems help minimize water loss, maintain soil moisture, reduce weed growth, and ensure uniform water distribution across the field.

2. Drip Irrigation:

Drip irrigation, also called micro-irrigation, delivers water directly to the plant's root zone through a network of pipes and emitters. It reduces evaporation and percolation losses while providing consistent soil moisture.

Advantages:

- Saves 30–50% of water compared to traditional irrigation.
- Improves fertilizer use efficiency through fertigation.

- Reduces weed infestation and soil erosion.

Limitations:

- High initial installation cost.
- Requires regular maintenance to avoid clogging.

3. Sprinkler Irrigation:

Sprinkler irrigation distributes water through overhead nozzles, simulating rainfall. It is suitable for most field crops and uneven terrains.

Advantages:

- Provides uniform water application.
- Suitable for sandy soils with high infiltration rates.
- Can be used for frost protection and cooling crops in hot climates.

Limitations:

- Higher energy requirement for pumping.
- Wind interference may affect water distribution.
- Potential for leaf wetness leading to disease incidence.

4. Comparative Benefits:

- Drip irrigation is more suitable for orchard crops, vegetables, and row crops.
- Sprinkler irrigation is effective for cereals, pulses, and fodder crops.
- Both systems significantly enhance water-use efficiency and crop productivity compared to conventional methods.

Conclusion

Water management is a cornerstone of sustainable agriculture, particularly in regions facing water scarcity. Drip and sprinkler irrigation systems provide innovative solutions to reduce wastage and optimize water use. While drip irrigation ensures precision watering for high-value crops, sprinkler irrigation offers flexibility for a wide range of crops and soil types. Together, these strategies not only conserve water but also increase farm profitability, making them essential tools for future-ready agriculture.

References

1. Keller, J., & Bliesner, R.D. (1990). Sprinkler and Trickle Irrigation. Springer Science & Business Media.
2. FAO. (2018). Irrigation in Agriculture: Modern Techniques for Water Conservation. Food and Agriculture Organization of the United Nations.
3. Narayananamoorthy, A. (2010). Economics of drip and sprinkler irrigation in India. *Irrigation and Drainage*, 59(4), 337-354.
4. Parihar, S.S., et al. (2019). Advances in irrigation management for sustainable agriculture. *Indian Journal of Agronomy*, 64(3), 299-308.

Farmers' Income Support Schemes & Expansion of Kisan Credit Card Limits

Rita Fredericks

CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Farmers' income support programs and increasing Kisan Credit Card (KCC) coverage are crucial to securing agricultural sustainability and rural financial security in India. Direct benefit transfer (DBT)-based income support programs like PM-KISAN ensure timely support, breaking reliance on informal credit. At the same time, the KCC program equips farmers with low-cost and accessible institutional credit, allowing them to finance consumption and production needs. New enlargements in credit facilities encompass allied ventures such as dairy, fisheries, and horticulture, enhancing farm diversification. All these together augment livelihoods, minimize agrarian distress, and promote inclusive rural growth.

2. Introduction

Farmers are the backbone of India's economy, playing a key role in food security, rural livelihoods, and employment. But they are confronted with challenges like meager income from farms, increasing cost of inputs, market unpredictability, and reliance on informal credit. In response, the Government of India has launched a range of income support measures and fortified institutional credit facilities under the Kisan Credit Card (KCC) system.

3. Farmers' Income Support Schemes: An Overview

Income support schemes are formulated to give direct financial help to farmers, lessening their reliance on moneylenders and facilitating timely investment in farming. These schemes complement farm earnings, enable consumption requirements, and diminish exposure to risks.

Key Income Support Schemes

3.1 Pradhan Mantri Kisan Samman Nidhi (PM-KISAN)

The Pradhan Mantri Kisan Samman Nidhi (PM-KISAN) is a flagship income support scheme launched in 2019 with the objective of bringing financial stability to farmers. Through this scheme, targeted small and marginal farmers are entitled to ₹6,000 every year, disbursed in three equal fractions

of ₹2,000 each, directly credited to their bank accounts under Direct Benefit Transfer (DBT). Supporting over 12 crore beneficiaries, PM-KISAN assists farmers in paying farm input costs and family expenses while minimizing reliance on informal moneylenders. This timely assistance fortifies farm productivity, provides social security, and makes a substantial contribution to rural economic resilience.

Source: <https://www.sarakaricareer.in/how-to-apply-kisan-credit-card-scheme>.

3.2 Pradhan Mantri Fasal Bima Yojana (PMFBY)

The Pradhan Mantri Fasal Bima Yojana (PMFBY) offers complete risk protection to farmers in case of crop loss due to natural disasters, pests, or diseases. With low premium costs of 2% for Kharif and 1.5% for Rabi crops, it helps maintain income stability and safeguards farmers from financial stress in case of crop failure, fostering agriculture resilience.

3.3 Pradhan Mantri Krishi Sinchayee Yojana (PMKSY)

Inaugurated to improve irrigation efficiency under the motto "Har Khet Ko Pani," the Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) focuses on ensuring water for every agricultural farm. Through efficient water utilization and irrigation facilities, the scheme minimizes yield losses due to water deficiency, increases cropping intensity, and ensures sustainable agricultural productivity in India.

3.4 Rythu Bandhu (Telangana)

Rythu Bandhu is a state-specific initiative in Telangana that gives direct financial assistance to farmers for buying necessary farm inputs. By providing prompt support for seeds, fertilizers, and other cultivation requirements, the scheme raises agricultural productivity, lowers farmers' reliance on informal credit, and increases income security, adding to the overall economic well-being of small and marginal farmers in the state.

3.5 KALIA (Krushak Assistance for Livelihood and Income Advancement) – Odisha

KALIA is a holistic scheme in Odisha offering financial assistance to farmers for cultivation of crops, livelihood support to landless farm workers, and crop insurance protection. By covering input expenses, income safety, and risk mitigation, KALIA strengthens marginal and small farmers, encourages environmentally friendly agriculture, mitigates indebtedness, and improves rural livelihoods, ensuring economic security and resilience against agrarian risks.

Source: <https://zfunds.in/m/kisan-credit-card-kcc>

4. Increase in Kisan Credit Card (KCC) Limits

The Kisan Credit Card Scheme, launched in 1998 by RBI and NABARD, targeted supplying timely credit to farmers at the concessional rate of interest. It has grown to cover allied activities like animal husbandry, dairy, and fisheries over a period of time.

Main Features of KCC

- Short-term credit for crop production and allied activities.
- Interest subvention: 4% effective rate against prompt repayment.
- Easy withdrawal via ATM-enabled RuPay cards.

Recent KCC Expansion

- Increased Credit Limits: Upped from ₹3 lakh to ₹5 lakh to cover rising farm investment requirements.
- Addition of Allied Sectors: Shelter for livestock, dairy, and fisheries cultivators..topic: Digitalization: Easy application through banks as well as Common Service Centres (CSCs).
- Special Drive (2020 onwards): Campaign for extending KCC to 2.5 crore farmers, including PM-KISAN beneficiaries.

5. Advantages of Income Support and KCC Expansion

Implementation of farmers' income support schemes along with increasing Kisan Credit Card (KCC) limits has various advantages that improve financial stability and agricultural livelihoods.

Income Security: Direct cash benefits like PM-KISAN and state-specific schemes minimize financial pressure, making household consumption stable and allowing farmers to concentrate on productive activities without taking high-interest informal loans.

Timely Purchase of Inputs: Loans by KCC enable farmers to make timely purchases of good seeds, fertilizers, equipment, and other inputs, which are essential for realizing maximum crop production and farm productivity.

Decline in Dependence on Moneylenders: With the provision of low-cost institutional credit, farmers give up dependence on moneylenders, thus avoiding the burden of interest and financial risk.

Improved Productivity: Availability of credit and financial assistance enables the investment in irrigation, livestock, mechanization, and new agricultural technology, leading to increased production and profitability.

Financial Inclusion: Widening of KCC coverage helps ensure that women farmers, tenant farmers, and workers in the allied sector have access to formal banking and credit facilities, promoting inclusive growth.

Risk Management: Crop insurance against KCC loans enables farmers to reduce the effects of climate-related shocks, pests, and crop losses, promoting income security and protection against uncertainties.

6. Implementation Challenges

Notwithstanding the significant development of farmers' income support programs and the upscaling of Kisan Credit Card (KCC) limits, there are a number of implementation challenges that restrict their effectiveness.

Exclusion Errors are created when small and tenant farmers are excluded based on land ownership document problems, thus denying them direct benefit transfers or institutional credit access.

A knowledge gap between farmers and scheme eligibility, application, and benefits also adversely affects participation, thus limiting the programs' outreach.

Bureaucratic delays in disbursement frequently delay the timely provision of funds, thus impairing input purchase and crop choice.

Misuse of credit is another issue, as some farmers take loans for non-farm purposes, contravening the purposes of KCC and income support programs.

Infrastructure bottlenecks, such as inadequate rural bank facilities, paucity of ATMs, and inadequate connectivity, constrain farmers' access to both cash transfers and formal credit.

Last but not least, repayment stress during unfavorable climatic shocks or crop failures may cause farmers to find it challenging to repay KCC loans, resulting in defaults and financial pressure.

Responding to these challenges demands focused interventions like digital integration, financial literacy initiatives, simplified processes, and better infrastructure to facilitate that the benefits of such schemes reach all the targeted beneficiaries effectively and fairly.

7. Strategies for Strengthening Schemes and KCC

Awareness and Capacity Building

Awareness and capacity development are essential for successful implementation of farmers' income support schemes and KCC extension. Village-wide campaigns enable farmers to comprehend scheme benefits, entitlement, and application process. Furthermore, ICT instruments like mobile apps, SMS alerts, and digital portals offer timely information, advice, and support. These efforts enable farmers to receive financial support effectively, enhance decision-making, and achieve maximum enrollment in government schemes.

Simplification of Procedures

Simplification of application processes is critical to improve farmers' access to Kisan Credit Cards and income support programs. Simplifying documentation requirements reduces bureaucratic obstacles and accelerates credit disbursement. Women farmers, tenant cultivators, and weaker sections are provided special provisions to ensure inclusiveness and equal access. Simple processes allow for timely availability of funds, empower

effective use of resources, and promote greater participation in farm financial support schemes.

Technological Integration

Inclusion of technology in farmers' income support programs and Kisan Credit Card operations improves efficiency and transparency. Integration of KCC accounts with digital wallets and UPI allows quicker, safer transactions directly to the farmers. Aadhaar-based authentication avoids duplication and guarantees that benefits are delivered to targeted beneficiaries. Digital platforms also allow real-time monitoring, grievance redressal, and smooth communication, making it possible for farmers to receive financial support consistently and enabling a more inclusive, tech-driven agri-ecosystem.

Monitoring and Transparency

Comprehensive monitoring and transparency are the keys to the smooth adoption of income support programmes and expansion of the Kisan Credit Card facility. On-going audits ensure prevention of fund misuse and ensure that the financial benefit ultimately reaches the deserving farmers. Grievance redressal mechanisms at the block and district levels also enable farmers to complain, seek clarification, and settle disputes in a timely manner. These steps engender accountability, enhance trust in the system, and improve scheme effectiveness overall.

Strengthening SHGs and Cooperative Banks

Strengthening cooperative banks and self-help groups (SHGs) increases farmers' access to credit facilities and financial services. Facilitating SHG-bank linkages enhances reach, particularly in rural areas, and allows timely and low-cost loans. Supporting women's farmer producer organizations (FPOs) enables collective bargaining power, better market access, and empowerment of rural women. All these steps help ensure financial inclusion, allow effective utilization of KCC funds, and lead to sustainable and equitable growth in agriculture.

Climate-Resilient Financing

Climate-resilient financing enhances farmers' ability to mitigate risks of weather variability. Coupling crop loans with weather-based insurance products guarantees compensation in the event of droughts, floods, or other climatic losses. By offering moratoriums on loan repayment to farmers in affected areas, financial pressures and indebtedness are avoided. These interventions build resilience, provide farm income guarantees, and encourage sustainable agricultural practices against rising climate uncertainties.

8. Conclusion

Farmers income support programs and increase in Kisan Credit Card limits are a major step towards inclusive, secure, and sustainable rural development. Through the combination of direct cash transfer with concessional credit, these schemes respond to both short-term consumption requirements and longer-term investment needs. Nonetheless, to achieve optimal benefits, stronger focus is required on awareness, financial literacy, ease of access, and prompt disbursal. Incorporating women farmers, tenant cultivators, and workers in allied sectors will make these schemes more inclusive and equitable. Strengthening these initiatives will not only stabilize farmers' incomes but also help realise the vision of doubling farmers' income and usher in rural prosperity.

9. References

Dashrath, M. G. S. (2020). *Attitude of farmers towards Kisan Credit Card Scheme* (Doctoral dissertation, MAHATMA PHULE KRISHI VIDYAPEETH).

Kaur, H., & Dhaliwal, N. K. (2018). Progress of kisan credit card scheme in India. *Amity Journal of Agribusiness*, 3(1), 26-36.

Meena, S. S., & Reddy, G. P. (2013). A study on growth, performance and impact of Kisan Credit Cards on farmer's income in Rajasthan-an economic approach.

Padmaja, B., Deshmukh, P. R., Kapse, P. S., Deshmukh, J., & Kadam, R. P. Perceived constraints and suggestions for improvement: Insights from PM-KISAN beneficiary farmers.

Shekhar, C. (2025). Assessing the Economic Impact of the Kisan Credit Card Scheme on Farmers' Income and Prosperity: A Case Study of Ballia District, Uttar Pradesh. *Available at SSRN 5360300*.

Singh, H., & Sekhon, M. K. (2005). Cash-in benefits of the Kisan Credit Card Scheme: onus is upon the farmer. *Indian Journal of Agricultural Economics*, 60(3).

Mushroom Cultivation: A Sustainable Generation Model

Ankit

Lovely Professional University, Punjab

Mushroom cultivation has emerged as an innovative, eco-friendly, and profitable farming practice that contributes to sustainable agriculture. Mushrooms are highly nutritious, rich in proteins, vitamins, and minerals, while also serving as a source of income generation and rural development. Unlike conventional crops, mushrooms can be cultivated in limited spaces using agricultural and household waste, making them an excellent generation model for small-scale and commercial farmers.

1. Importance of Mushroom Cultivation

Mushrooms are increasingly recognized for their nutritional, medicinal, and economic value. They play a significant role in improving food security, combating malnutrition, and creating employment opportunities. The cultivation process requires minimal land, water, and energy compared to traditional crops, thereby promoting environmental sustainability.

2. Methods of Mushroom Cultivation

The cultivation process involves the following steps:

- Selection of Mushroom Species: Popular species include button mushroom, oyster mushroom, and shiitake.
- Substrate Preparation: Agricultural wastes like straw, husk, and sawdust are used as growth media.
- Spawn Inoculation: Mushroom spores are introduced into the prepared substrate.
- Incubation: The substrate is kept under controlled temperature and humidity for mycelium growth.
- Fruiting and Harvesting: After sufficient colonization, mushrooms start fruiting and can be harvested in cycles.

3. Economic and Environmental Benefits

Mushroom farming provides dual benefits—economic and ecological. Economically, it offers a

high return on investment within a short period, making it suitable for farmers and entrepreneurs.

Environmentally, mushroom cultivation recycles organic waste, reduces pollution, and contributes to a circular economy.

4. Challenges and Solutions

Despite its potential, mushroom cultivation faces challenges such as lack of technical knowledge, contamination risks, and market limitations. These issues can be addressed through proper training, government support, establishment of farmer cooperatives, and the use of modern technologies like climate-controlled units.

5. Conclusion

Mushroom cultivation serves as a sustainable generation model for food, income, and environmental health. With rising global demand for nutritious and organic foods, mushroom farming provides a promising opportunity for entrepreneurs, researchers, and policymakers to integrate sustainable practices into agriculture. This innovative farming model has the potential to transform livelihoods and contribute towards a greener future.

Significance of Information and Communication Technology (ICT) in Contemporary Agriculture

Ashish Kumar Nagar

Assistant Professor, Sourabh Agriculture College Kheda hinduon City

Introduction

Agriculture has never been the lifeblood of human society, supplying food, raw materials, and a source of livelihood for millions of individuals across the globe. In the 21st century, the industry is confronted with intricacies like climate change, degradation of resources, dwindling productivity, and the responsibility to feed an increasingly growing population. To counter these challenges, Information and Communication Technology (ICT) has proved to be a revolutionary instrument in contemporary agriculture. ICT facilitates farmers, researchers, policymakers, and agribusinesses to exchange knowledge, enhance efficiency, and embrace sustainable systems.

Role of ICT in Modern Agriculture

ICT involves technologies like mobile phones, the internet, geographic information systems (GIS), remote sensing, unmanned aerial vehicles (drones), artificial intelligence (AI), big data, and cloud services. These technologies have an immense role to play in the development of agriculture through the following:

1. Precision Farming

ICT systems, including GPS-guided machinery, drones, and sensor-based equipment, enable farmers to observe soil health, moisture, crop growth, and pest infestation. With precision farming, the farmer is able to provide the correct input in the correct quantity at the correct location. For instance:

- ✓ Soil sensors offer real-time feedback on nutrient conditions, facilitating site-specific fertilizer application.

- ✓ Drones take aerial photographs to identify crop stress and pest attacks before they become a full-blown problem.
- ✓ Soil moisture sensor-based automated irrigation systems maximize water utilization, avoiding wastage.

This data-based farming method reduces excessive use of fertilizers, pesticides, and water, cutting down costs and environmental contamination while ensuring higher crop yields.

2. Weather Forecasting and Climate Adaptation

Weather forecasting is paramount to agriculture, since unforeseen climatic conditions have the potential to annihilate crops. ICT-based instruments provide localized weather forecasts via mobile apps, SMS messaging, and radio services. For instance:

- ✓ Farmers are offered real-time climatic information and adaptive measures through advisory services based on mobiles such as India's Kisan Call Centers.
- ✓ ICT platforms facilitate climate-smart agriculture, which advises farmers on drought-resistant varieties of crops, pest control during humid periods, and correct schedule of harvesting.
- ✓ ICT minimizes risks associated with floods, drought, and high temperatures by enabling timely decisions of sowing, irrigation, harvesting, and crop protection to make agriculture more climate-change resilient.

3. Price and Market Access Information

In the past, farmers used to sell their produce through middlemen, which resulted in exploitation and lowered profits. ICT fills the gap by offering direct access to market data:

- ✓ E-marketing platforms such as e-NAM (Electronic National Agriculture Market) in India link farmers directly with buyers from other regions, providing better pricing and greater market access.
- ✓ Farmers get current prices through SMS and mobile applications, allowing them to determine when and where to sell their crops.
- ✓ ICT also enables digital financial services like mobile banking and online payment platforms, facilitating safe and secure transactions.

This not only increases the bargaining power of farmers but also their income and livelihood security.

4. Knowledge Sharing and Capacity Building

One of the biggest strengths of ICT is that it can spread agricultural knowledge quickly and in large numbers. Farmers, particularly in rural areas, hardly ever have access to up-to-date and accurate information. ICT fills this gap with:

Digital platforms and mobile applications that offer best practices on crop growing, pest control, improving soil health, and conserving water. Digital portals and e-libraries that host government schemes, training guides, and success stories made available in local languages. Digital video conferencing and e-learning platforms that allow agricultural extension personnel and researchers to provide virtual training sessions, workshops, and field demonstrations.

This not only equips farmers with new knowledge but also provides inclusivity through the access of smallholders, women farmers, and youth who were otherwise left out of extension services.

5. Supply Chain Management

Effective supply chain systems are needed to minimize post-harvest losses and promote fair trade. ICT is vital in making the value chains in agriculture transparent and responsive:

Computerized tracking systems track the movement of commodities from farm to market, assisting in minimizing storage, transport, and distribution delays. Cold chain monitoring technologies avoid deterioration of perishable products like fruits, vegetables, milk, and fish through appropriate temperature maintenance. Online aggregation and logistics platforms link producers with wholesalers, retailers, and consumers directly, thus reducing the supply chain and boosting profitability. ICT, through these technologies, minimizes wastage, improves food safety, and provides timely delivery of farm products.

6. Financial Inclusion and E-Governance

Financial services and access to government support are crucial for improving farmers' resilience and productivity. ICT has revolutionized rural finance and governance by:

Mobile banking and e-wallet facilities to enable farmers to save, borrow, and conduct transactions securely without relying on informal moneylenders. Online platforms for subsidies and insurance to provide transparent and timely disbursement of funds directly into farmers' accounts, reducing corruption and delay. ICT-enabled crop insurance schemes where claims can be authenticated with satellite pictures and weather information, resulting in quicker compensation during natural disasters. By drawing farmers into the digital economy, ICT not only improves financial inclusion but also increases trust in government institutions.

7. Research and Development

ICT is transforming agricultural research by encouraging collaboration, innovation, and accuracy in decision-making. Some of the notable contributions include:

Big data analytics that enable researchers to analyze extensive datasets regarding soil fertility, crop performance, and climatic factors to devise stress-tolerant crop varieties. Artificial intelligence (AI) and simulation models that forecast pest and disease outbreaks, schedule irrigation, and inform climate-smart agriculture practices. Collaborative digital platforms that connect scientists, universities, and agricultural research institutions from across the world to speed up research findings dissemination.

These technologies accelerate the pace at which innovative solutions are developed and that knowledge is bridged to field-level practice effectively.

Advantages of ICT in Farming

The application of ICT in agriculture has several socio-economic and environmental advantages, making conventional farming more knowledge-intensive, market-based, and sustainable. Some of the most important advantages are:

1. Enhanced Productivity through Proper and Timely Decision-Making

ICT equipment offers farmers real-time information on soil fertility, weather, pest infestations, and market trends. This information supports them in making decisions about sowing dates, choice of crop varieties, watering schedules, and crop protection. For example, mobile-based advisory systems enable farmers to react early to outbreaks of pests or changing weather patterns, which results in enhanced crop yields.

2. Lower Costs through More Effective Use of Resources

Precision agriculture technologies incl. GPS-equipped equipment, sensor-driven irrigation, and drones allow inputs such as fertilizers, pesticides, and water to be applied optimally. By delivering the optimal amount at the optimal time and location, farmers avoid wastage, lower input costs, and reduce environmental pollution. This results in increased profitability, particularly for smallholders with limited resources.

3. Improved Resilience to Climate Variability and Natural Disasters

Agriculture is seriously threatened by climate change. ICT assists farmers in enhancing resilience through early warning, localized weather forecasts, and adaptation to climate. For instance, farmers can change planting dates, use drought-resistant crops, or change irrigation management depending on ICT-informed advisories. ICT platforms also assume importance in disaster response and rehabilitation planning in case of floods or cyclones.

4. Increased Market Competitiveness for Small and Marginal Farmers

ICT decreases farmers' reliance on intermediaries through direct access to market information and electronic platforms for exchange. With knowledge of actual-time price variations, forecasting of demand, and requirements of buyers, farmers are able to negotiate improved terms. Online marketplaces and e-commerce also allow farmers access to a larger pool of consumers, enhancing their competitiveness in domestic and international markets.

5. Enhanced Livelihood Opportunities Through Enhanced Access to Knowledge and Financial Services

Digital literacy, mobile banking access, crop insurance, and e-training programs enable rural people to diversify their revenue streams. The poor and vulnerable, especially women and the youth, are particularly advantaged by ICT-based initiatives providing jobs in agribusiness, food processing, logistics, and extension services, thereby alleviating poverty and rural development.

Challenges in ICT Adoption

Despite the transformative potential of ICT in agriculture, several barriers hinder its widespread adoption, particularly in developing countries.

1. Poor Digital Literacy Among Farmers

A significant portion of the farming population, especially elderly and smallholder farmers, lack the skills to effectively use ICT tools such as mobile apps, online portals, and digital payment systems. Without proper training and awareness, the benefits of ICT remain inaccessible to many.

2. Poor Infrastructure in Rural Areas

Good internet connectivity, power supply, and mobile phone network coverage are necessary for ICT-based services. Most rural and remote areas, however, experience infrastructure shortcomings, which prevent farmers from accessing digital platforms with certainty. This establishes a digital divide between city dwellers and rural communities.

3. High Cost of Sophisticated ICT Tools

While simple services such as SMS notifications are within reach, more sophisticated technologies such as drones, Internet of Things devices, and satellite-based services tend to be out of reach financially for small and marginal farmers. In the absence of subsidization or cooperative ownership, these tools find limited adoption.

4. Limited Localized Content in Regional Languages

All ICT services are coded in global or national languages that limit their utility for rural communities with low literacy and regional dialects prevailing. Unlocalized, user-unfriendly content diminishes the impact of digital advisory services.

5. Data Privacy and Security Issues

As more farmers increasingly use digital platforms and cloud services, their personal and farm data are susceptible to abuse. Issues of ownership, openness, and privacy of data deter others from adopting ICT solutions in full measure. Strict policies on digital rights and data protection are necessary to establish trust among farm communities.

6. Fragmented Policy and Institutional Support

In most nations, ICT projects in agriculture are project-oriented, short-term, and not well integrated into national agricultural policies. Ineffective coordination of stakeholders government, private sector, and research institutions prevents scalability and sustainability.

7. Socio-Economic Disparities

Marginalized groups, women farmers, and smallholder farmers tend to encounter additional constraints in accessing ICT services based on financial, social, or cultural issues. Lacking inclusive policies, ICT adoption will exacerbate inequalities among rural communities.

Future Prospects

The convergence of ICT with innovative technologies such as artificial intelligence, blockchain, the Internet of Things (IoT), and machine learning has the potential to transform agriculture. Smart farming, climate-smart agriculture, and e-agriculture platforms will guarantee sustainable food production systems that are efficient, equitable, and resilient.

Conclusion

ICT is now not a luxury but a requirement for agriculture in the modern era. ICT has the potential to develop agriculture into a more productive, sustainable, and profitable industry by empowering farmers with information, connecting them to markets, and facilitating precision farming. Governments, private sector firms, and research organizations need to join hands to achieve the large-scale use of ICT solutions, particularly by smallholder farmers.

Kisan Call Centres (KCC) & e-Choupal: Farmer Helplines and Digital Kiosks.

¹Dileep Kumar Gupta, ²Subhash Verma, ³Rita Fredericks

¹Teaching Assistant, Deptt. of Agricultural Extension, Institute of Agricultural Sciences, Bundelkhand University, Jhansi (U.P.) – 284128

²Assistant professor, School of Agriculture, Eklavya University, Damoh, (M.P.)

³CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Introduction

Kisan Call Centres (KCC) is a national program initiated by the Government of India to make farmers available timely, dependable, and expert farm advice on a toll-free helpline. The scheme serves as a bridge between farmers and farm experts, allowing direct contact for advice on crop production, pest control, government schemes, weather forecast, and other farming problems. The major aim of KCC is to increase productivity, minimize losses, and boost sustainable agriculture practices.

The program focuses on giving farmers instant agronomic advice, filling knowledge gaps for rural folk, facilitating government welfare schemes, and enabling sustainable agriculture. Farmers are able to avail the service using a toll-free number so that small and marginal farmers are not left behind at any point with an expenditure. The KCC facilities are offered in several regional languages, where language does not become a hindrance to getting essential information.

Agricultural specialists, scientists, and professionals guide on issues ranging from crop cultivation, disease and pest control, fertilizers and nutrients use, irrigation and water management, animal husbandry, weather forecasting, and government schemes like subsidy, crop insurance, and loans. With this expert opinion, farmers can make correct decisions on the farm and minimize visits to agricultural offices for miles around, which saves money as well as time.

KCC also encourages the application of Information and Communication Technology (ICT) in farming, which helps to bridge the rural-urban knowledge gap and enhance the digital literacy of

farmers. Furthermore, the service has a feedback system that allows farmers to voice their experience and assists in enhancing the quality of advice given.

In total, Kisan Call Centres have made a great difference in enhancing farm productivity, minimizing crop losses, and raising awareness about government schemes. They have empowered farmers to take decisions and have aided financial well-being by cutting down on unnecessary expenditure and increasing profits. KCC makes farmers more self-dependent, sustainable, and self-assured in operating their farming activities.

Objectives of KCC

Offer Timely Farming Guidance: Farmers receive direct solutions to their issues without delay.

- ✓ **Fill Knowledge Chasms:** Get farmers in distant or rural regions linked with agricultural researchers and extension agents.
- ✓ **Facilitate Government Schemes:** Inform farmers regarding subsidies, crop insurance, and other government schemes.
- ✓ **Enable Sustainable Agriculture:** Promote uptake of new techniques such as integrated pest management, improvement of soil health, and effective water use.

Important Facets of KCC

Toll-Free Access

- ✓ Farmers can call a toll-free number (1800-180-1551) from anywhere in India.

- ✓ This makes it inclusive and breaks the financial constraint for small and marginal farmers.

Multilingual Support

Facilities are made available in various regional languages, given the multi-lingual nature of people in India. This makes language not a constraint for farmers to access important information.

Expert Guidance

Answers are furnished by agricultural experts, scientists, and trained officials. Support is offered on a broad array of subjects:

- ✓ **Crop Production:** Seed selection tips, sowing methods, and crop rotation.
- ✓ **Pest and Disease Management:** Diagnosis, avoidance, and control of crop diseases and pests.
- ✓ **Fertilizers and Nutrient Management:** Proper fertilizing tips for best yield.
- ✓ **Irrigation and Water Management:** Tips on water use efficiency and irrigation planning.
- ✓ **Livestock and Animal Husbandry:** Animal health support, feeding, and breeding tips.
- ✓ **Weather Information:** Notifications and forecasts to enable farmers to schedule sowing and harvesting.
- ✓ **Government Schemes:** Subsidy, crop insurance, loans, and other schemes for farmer welfare.

Time-Saving

Farmers obtain instant information without having to travel long distances to research institutions or agricultural offices. Reduces the effort, time, and cost of seeking agricultural advice in person.

Fosters ICT in Agriculture

KCC is an online platform that incorporates Information and Communication Technology (ICT) in agriculture. It assists in bridging the rural-urban knowledge gap and enhances digital literacy among farmers.

Feedback Mechanism

Farmers can give feedback on the guidance provided, which helps enhance the quality of service. Regular monitoring helps ensure that questions are handled effectively and efficiently.

Effect of KCC

Enhanced Productivity: Farmers implement improved practices and technologies on the basis of expert guidance.

- ✓ **Less Crop Losses:** Information on pests, diseases, and weather in time helps reduce losses.
- ✓ **Improved Awareness:** Farmers become more aware of government schemes and thus utilize them better.
- ✓ **Empowerment:** Enhances the decision-making capability of farmers and makes them self-dependent.
- ✓ **Financial Benefit:** Helps farmers reduce unnecessary costs and maximize profits.

Advantages of Kisan Call Centres (KCC) to Farmers

Kisan Call Centres offer farmers prompt and timely resolutions for crop-related issues, allowing them to act immediately against diseases, pest attacks, or nutrient deficiencies. The instant support prevents losses in crops and ensures improved farm productivity. Farmers also become aware of advanced

farming techniques, such as better sowing methods, integrated pest management, water-saving irrigation methods, soil health management, and the adoption of high-yielding crop varieties. This awareness enables them to implement scientific and sustainable farming techniques.

KCC provides information on government subsidies, schemes, and welfare programs, enabling farmers to avail benefits such as crop insurance, loans, input subsidies, and other support programs. Through the comprehension and application of these schemes, farmers are able to enhance their financial sustainability and mitigate the economic hazards involved in agriculture. Further, KCC is important in the mitigation of crop losses through timely guidance, particularly by offering early warnings about weather patterns, infestations of pests, and disease threats. This precautionary measure enables farmers to make preparations and take protective measures in advance.

e-Choupal

Definition

e-Choupal is a revolutionary initiative undertaken by ITC Limited to empower farmers by giving them access to live information about agriculture, weather, market prices, and optimum farming practices. The initiative creates digital kiosks in villages that are operated by local farmers referred to as "sanchalaks." The kiosks serve as focal points for the community, providing farmers with timely knowledge and service to enhance productivity, profitability, and sustainability in agriculture.

Key Features

The rural kiosks are installed with computers and internet access, providing farmers direct access to a large volume of agricultural knowledge. Using e-Choupal, farmers can receive information about prices of crops, quality guidelines, and advanced farming methods, allowing them to make intelligent production and marketing decisions. The kiosks are also used as a community gathering point, where villagers congregate to exchange knowledge, learn together, and debate agricultural issues.

Another significant advantage of e-Choupal is market linkages. Farmers are able to sell their produce directly through the platform at remunerative prices, thus practically eliminating reliance on intermediaries and offering better returns for their produce. By making available timely and relevant information, e-Choupal improves the decision-making capability of farmers, resource management, adoption of sustainable agricultural practices, and rural livelihoods.

Also, farmers are well-equipped with improved decision-making and planning skills, as the professional guidance they get assists them in making informed decisions regarding crop choice, input application, and market timing. KCC further enables knowledge exchange and problem-solving, and farmers learn from professionals as well as learn from others. With time, this results in greater confidence, independence, and overall farm productivity and income improvement.

Conclusion

Both Kisan Call Centres (KCC) and e-Choupal are revolutionary initiatives that have a critical role to play in empowering farmers through timely, accurate, and actionable information. Where KCC is more in the form of advisory services, providing advice on crop management, pest control, irrigation, and government schemes, e-Choupal is more about market connectivity and digital literacy, facilitating farmers to access real-time prices in the market, demand trends, and new-age farming methods. Together, the two platforms close vital information gaps, support better decision-making, and enable sustainable agricultural practice adoption. Through the combination of expert guidance and market knowledge, KCC and e-Choupal together lift productivity, income, and resilience, assisting farmers in overcoming the challenges of contemporary farming and achieving increased economic and social empowerment.

Crop Rotation and Diversification for Sustainable Agriculture

¹Dr. Ishtiyaq A Khan, ²Dr. Umer Bin Farook, ³Dr. Shabir Ahmad Ganai,

⁴Dr. Suheel Ahmad Ganai, ⁵Samar Jan

¹Head KVK Anantnag, SKUAST-K

²SMS Plant Protection, SKUAST-K

³SMS Agri Economic, KVK Anantnag, SKUAST-K

⁴Senior Research Fellow, KVK Anantnag, SKUAST-K

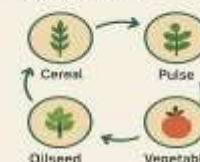
⁵Farm manager, KVK Anantnag, SKUAST-K

Introduction

Sustainable agriculture seeks to preserve soil fertility over the long term, decrease environmental degradation, and provide food security for generations to come. Some of the numerous practices that contribute to these ends include crop rotation and crop diversification. This helps increase the effectiveness of using resources, lower the prevalence of diseases and pests, and generally increase the resilience of agriculture systems. By following crop rotation and diversification, farmers can maintain productivity, ecological balance, and income security.

What is Crop Rotation?

Crop rotation is the deliberate and systematic planting of various crops on the same land in a sequence. Rather than planting the same crop every year, which tends to cause nutrient shortages and pest accumulation, different crops are planted one after another by farmers to replenish soil fertility and equilibrium between nutrients. For example, a cereal-pulse-oilseed followed by a vegetable improves soil health to the optimal extent. Grains such as wheat or maize take up existing nutrients intensively, whereas legumes like lentil or chickpea provide nutrient enrichment to the soil through nitrogen fixation. Oil crops such as mustard or groundnut, with their rich root penetration, mobilize nutrients from the lower soil levels, and vegetables such as potato, onion, or okra provide diversification to crops and increased yields. These sequential cropping plans enhance soil fertility, disrupt the life cycle of pests and diseases,


increase efficiency in the utilization of nutrients, and assist in soil structure maintenance.

Suitable Crop Rotation Examples

- ✓ Rice → Wheat → Mungbean (Improves soil fertility & yields)
- ✓ Maize → Mustard → Potato (Ensures balanced nutrient use)
- ✓ Sugarcane → Vegetables → Pulses (Diversifies income & soil health)

WHAT IS CROP ROTATION?

Crop rotation is the practice of growing different crops sequentially on the same field in a planned pattern.

- Improves soil fertility through biological nitrogen fixation (leg. legumes)
- Breaks the cycle of pests, diseases, and weeds
- Enhances soil structure and organic matter content
- Optimizes use of nutrients and water
- Provides stable yields and reduces risk of crop failure

SUITABLE CROP ROTATION EXAMPLES

- Rice → Wheat → Mungbean
- Maize → Mustard → Potato
- Sugarcane → Vegetables → Pulses
- Diversifies income & soil health

WHAT IS CROP DIVERSIFICATION?

Cultivating a variety of crops on the farm either simultaneously (intercropping/mixed cropping) or in different seasons.

- Reduces dependence on a single crop and minimizes economic risks
- Enhances dietary diversity and nutritional security
- Encourages biodiversity and ecosystem balance
- Increases income opportunities through high-value crops (vegetables, fruits, spices, medicinal plants)
- Improves resilience to climate change and extreme weather

CONCLUSION

Crop rotation and diversification are time-tested, eco-friendly, and economically viable practices. By adopting them, farmers can ensure sustainable agriculture that conserves natural resources, enhances resilience, and secures livelihoods.

KEY MESSAGE FOR FARMERS

"Don't put all your hopes in one crop. Rotate and diversify to sustain your soil, farm,

Advantages of Crop Rotation

Crop rotation enhances soil health by way of biological nitrogen fixation, especially when legume crops like chickpea, lentil, or soybean are part of the rotation. These crops contain symbiotic Rhizobium bacteria in their nodules on the roots, which extract nitrogen from the air and fill the soil with nutrients

that will benefit future crops, thus lessening reliance on chemical fertilizers.

Another significant advantage is the disruption of weed, disease, and pest cycles. Repeated monoculture tends to enable the reproduction of injurious organisms, but when multiple crops are brought in rotation, the particular host for such pests and diseases is eliminated, destroying their life cycle and reducing their number naturally.

Crop rotation also improves soil structure and organic matter levels. Various root systems enter the soil at different depths, enhancing aeration, water penetration, and aggregation. The adding of crop residues deposits organic matter, which provides food to microbes and enhances overall soil health.

It also maximizes nutrient and water usage. Shallow crops like cereals tap surface nutrients, while deep crops like oilseeds tap deeper soil nutrients. Likewise, different water requirements for crops avert over-use of soil water and conserve water resources.

What is Crop Diversification?

Crop diversification is the process of growing a range of crops on the farm either at the same time, through methods such as intercropping and mixed cropping, or during alternate seasons by adopting multiple cropping patterns. Rather than relying on one crop for the entire year, farmers incorporate cereals, pulses, oilseeds, vegetables, fruits, spices, or even medicinal crops into the farm system. This method not only utilizes resources better but also assists in minimizing risks and enhancing farm sustainability as a whole.

Benefits of Crop Diversification

Crop diversification decreases reliance on a single crop and lowers economic risks. If farmers plant a single crop only, they become highly susceptible to price variations, pests, or climatic stress. Crop diversification ensures that even if one crop is lost, other crops bring income and food security, stabilizing livelihoods.

It increases dietary variety and nutritional well-being by offering a variety of food groups. For instance, cereals offer energy, pulses contain protein, oilseeds offer essential fatty acids, whereas vegetables and fruits provide vitamins and minerals. Such a varied diet prevents malnutrition, particularly in rural settings.

Crop diversification also promotes biodiversity and sustains ecosystem stability. Various crops host numerous soil microorganisms, insects, and beneficial organisms, which enhance natural pest management and increase the fertility of soils. A diverse cropping system thus enhances the ecological basis of agriculture.

Another major advantage is the generation of additional income streams through value-added crops like vegetables, fruits, spices, and medicinal crops. These have higher market prices compared to staple cereals and can be used to increase profitability and capture niche markets.

Strategies for Successful Implementation

Successful implementation of crop rotation and diversification calls for prudent planning and scientific management. Farmers need to choose crops according to soil suitability, local climate, and access to water resources, since these variables have a great bearing on productivity and sustainability. The use of legumes as part of crop rotations is necessary because they contribute biologically fixed nitrogen to the soil and enhance fertility of future crops. In addition to staples, vegetable, fruit, and spice inclusion not only guarantees dietary and nutritional variability but also yields more economic value from the same land. Inter- and mixed cropping systems must be encouraged to maximize land use, enhance pest and disease management, and offer multiple sources of income. Along with this, access to advanced information and communication technology (ICT)-based advisory services has the potential to inform farmers' decisions on crop planning, market access, and weather-related risks.

Conclusion

Crop diversification and crop rotation are old, environmentally sustainable, and cost-effective practices endorsing the essence of sustainable agriculture. Through these methods, farmers can help preserve soil and water resources, increase soil fertility, and promote biodiversity while maintaining resilience to climate variability. Finally, these

practices lead to sustained yields, improved nutrition, and livelihood security for long-term agricultural sustainability.

Role of ICT in Agricultural Extension and Farmer Empowerment

¹Dileep Kumar Gupta, ²Subhash Verma, ³Anil Kumar

¹Teaching Assistant, Deptt. of Agricultural Extension, Institute of Agricultural Sciences, Bundelkhand University, Jhansi (U.P.) – 284128

^{2&3}Assistant professor, School of Agriculture, Eklavya University, Damoh, (M.P.)

Introduction

Information and Communication Technology (ICT) has become a strong instrument in revolutionizing agriculture. ICT fills the gap between research, extension systems, and farmers by providing strength to decision-making, increasing productivity, and empowering rural communities. It is an important aspect in ensuring timely, accurate, and relevant information is delivered to farmers so that they can adopt enhanced practices and mold themselves according to changing agricultural situations.

Importance of ICT in Agricultural Extension

One of the greatest contributions made by ICT in agricultural extension is the effective knowledge transfer. Farmers are able to receive the latest research results, enhanced farming practices, and timely weather forecasts through digital platforms, which guide them to make informed decisions at farm level.

ICT also makes it possible to provide real-time information. Farmers are provided with immediate updates on market trends, prices of commodities, outbreaks of pests and diseases, and government schemes, making them capable of reacting instantly to problems and opportunities.

It also has extensive outreach. Mobile apps, SMS services, call centers, and internet portals make extension services accessible to farmers even in remote and resource-scarce locations, bridging distance and infrastructure impediments.

ICT extension is also very economical. By minimizing the need for face-to-face interactions, it saves extension workers and farmers time and resources while facilitating quicker information dissemination.

Additionally, ICT offers personalized services aligned with farmers' needs. Data-driven platforms can provide location-based and crop-based recommendations, enabling farmers to utilize their resources more effectively and enhance productivity.

ICT Tools of Agricultural Extension

Cell phones and SMS facilities have emerged as among the best tools for rapid dissemination of advisories and warnings. Farmers can be sent instant messages on weather forecasts, pest alerts, and crop management techniques directly to their phones, allowing them to take timely action.

Mobile apps like m-Kisan and Kisan Suvidha offer farmers information on weather, market prices, soil health, and crop-specific agronomic operations. These apps are in the form of portable advisory services, where farmers can find accurate and up-to-date knowledge at their convenience.

Community radio and TV programs also have a great role in raising awareness. They air better farming techniques, government schemes, and success stories of the progressive farmers, thus inspiring others to follow the same method.

Online portals and digital platforms such as e-NAM (National Agriculture Market) and AgriStack reinforce agricultural extension even further by ensuring greater access to transparent markets and government services. These platforms enable farmers to sell their produce at optimal prices while providing them access to subsidies, credit facilities, and crop insurance.

Next-generation technologies like remote sensing, GIS, and drones are increasingly being adopted to assist precision farming and resource conservation. They help farmers and extension agents track soil health, evaluate crop conditions, identify stress, and plan optimal utilization of water and fertilizers.

Role of ICT in Farmer Empowerment

ICT has a revolutionary role to play in market empowerment by linking farmers directly with electronic markets, e.g., e-NAM, where they can get their produce sold at fair and competitive prices. This minimizes the dependence on intermediaries and maximizes the returns for farmers for their labor.

Knowledge empowerment is the other vital element, whereby ICT allows farmers to have better access to scientific research and field-level practical information. Farmers are able to make informed choices regarding crop variety, pest control, irrigation scheduling, and market timing using mobile apps, online portals, and advisory services.

With regard to economic empowerment, internet-based banking services, mobile wallets, and crop insurance programmes have opened new

avenues for financial inclusion. Farmers have easier access to credit, receive payments directly into their accounts, and insulate themselves from losses due to natural disasters.

ICT also facilitates social empowerment through the encouragement of networking and collective action. Social media groups, online forums, and digital communities enable farmers to share experiences, exchange resources, and build cooperative movements. Notably, these platforms also inspire women to engage in agriculture, providing them with increased visibility and decision-making capacity.

Conclusion

ICT is transforming agricultural extension into a more accessible, timely, and farmer-focused approach. ICT bridges the research-extension-farmer gap, enabling farmers to take informed decisions, adopt better practices, and make efficient use of resources. Real-time access to information on markets, climate, pests, and government programs improves productivity, raises income, and enhances resilience to climate variability. In summary, the proper application of ICT empowers farmers with the equipment and information to attain sustainable livelihoods and plays a major role in farming modernization and sustainability.

Building Resilient Soils for Sustainable Harvests: Low Carbon Footprint Practices for Problem Soil Management

Rajagopal Vadive

ICAR National Institute of Abiotic Stress Management, Baramati Pune, Maharashtra

Soils form the foundation of food security and play a central role in delivering ecosystem services such as nutrient cycling, carbon storage, and biodiversity support. However, problem soils—saline, sodic, acidic, shallow, gravelly, and waterlogged—limit sustainable food grain production while contributing to higher agricultural carbon footprints through inefficient input use and greenhouse gas emissions. This article highlights low carbon footprint soil management strategies that not only ameliorate problem soils but also enhance soil resilience. Practices such as integrated nutrient management, conservation agriculture, agroforestry, biochar application, and alternate wetting and drying in rice fields simultaneously reduce emissions and improve soil ecosystem services. Tables are included to illustrate soil-specific practices, their ecosystem service benefits, and their contributions to sustainable food grain production. By adopting these approaches, farmers can transform problem soils into resilient systems, ensuring productivity while addressing climate change. The aim is to popularize soil-smart practices that strengthen resilience, reduce emissions, and support a sustainable agricultural future.

Introduction

Soil is more than just a medium for crop growth; it is the foundation of food security and a vital provider of ecosystem services. Healthy soils regulate water, recycle nutrients, support biodiversity, and store carbon. However, problem soils such as saline, sodic, acidic, shallow, or gravelly lands pose challenges to sustainable food production. Mismanagement often increases the carbon footprint, depletes soil health, and threatens long-term productivity. By adopting soil-smart practices that combine carbon footprint reduction with improved ecosystem services, farmers can transform problem soils into resilient systems that support sustainable food grain production.

Carbon Footprints and Soil Ecosystem Services

The **carbon footprint** of agriculture represents the greenhouse gases (GHGs) emitted during farming activities, including nitrous oxide from fertilizer use, methane from flooded paddy fields, and carbon dioxide from tillage. On the other hand, **soil ecosystem services** are the benefits soils provide—such as nutrient cycling, water retention, carbon sequestration, and biodiversity support.

The challenge for farmers and policymakers is to strike a balance: reduce emissions while enhancing

ecosystem services. This balance is critical for sustainable agriculture, especially in regions with problem soils.

Problem Soils in India and Their Management

India has nearly 50–60 million hectares under various categories of problem soils. Saline and sodic soils cover about 6.7 million ha, concentrated in arid and semi-arid states. Acidic soils occupy nearly 49 million ha, largely in the north-eastern and high rainfall regions. Shallow and gravelly soils, common in the Deccan Plateau and hilly tracts, extend over 20 million ha. Waterlogged and flood-prone soils affect more than 10 million ha, especially in eastern states. These widespread areas require region-specific, low-carbon management strategies to ensure food security and soil health.

Problem Soils and Their Management

1. **Saline and Sodic Soils**—Poor soil structure and high salts reduce productivity. Practices such as gypsum application, salt-tolerant crop varieties, and organic amendments improve soil health and reduce carbon-intensive inputs.

- Acidic Soils** – Common in high rainfall regions, acidity limits nutrient availability. Lime application, green manuring, and conservation tillage reduce chemical fertilizer dependency and associated emissions.
- Shallow and Gravelly Soils** – Limited rooting depth and water holding capacity constrain yields. Agroforestry, mulching, and biochar addition enhance organic matter, sequester carbon, and improve water use efficiency.
- Waterlogged Soils** – Anaerobic conditions emit methane. Raised beds, alternate wetting and drying in paddy, and drainage systems cut methane emissions while maintaining productivity.

Low Carbon Soil Management Practices

Adopting low carbon strategies not only mitigates emissions but also strengthens soil resilience:

- Integrated Nutrient Management (INM):** Combining organic manures, crop residues, and biofertilizers with judicious fertilizer use reduces reliance on high-carbon chemical inputs.
- Conservation Agriculture:** Minimum tillage, residue retention, and crop rotation enhance carbon sequestration and improve soil biodiversity.
- Agroforestry and Cover Crops:** Trees and cover crops diversify carbon storage, protect against erosion, and enhance soil organic carbon.
- Biochar and Organic Amendments:** Adding biochar, compost, and farmyard manure improves soil carbon stocks while reducing external input needs.

Table 1. Soil Management Practices for Problem Soils and Their Benefits

Problem Soil Type	Recommended Practice	Ecosystem Service Benefits	Carbon Footprint Impact
Saline/Sodic	Gypsum, salt-tolerant	Improved	Reduced fertilizer

	crops, organic amendments	structure, nutrient cycling	use, lower emissions
Acidic	Liming, green manuring, conservation tillage	Balanced pH, enhanced nutrient uptake	Reduced N ₂ O emissions
Shallow/Gravelly	Agroforestry, mulching, biochar	Higher water holding, biodiversity support	Increased carbon sequestration
Waterlogged	Alternate wetting & drying, raised beds	Improved aeration, methane reduction	Lower CH ₄ emissions

Table 2. Low Carbon Practices and Their Contribution to Sustainable Food Grain Production

Practice	Carbon Footprint Reduction	Soil Resilience Improvement	Food Grain Productivity Impact
Integrated Nutrient Management	Lower GHGs from fertilizers	Enhanced soil fertility	Higher and stable yields
Conservation Agriculture	Increased soil carbon stocks	Improved soil biodiversity	Sustained yields under stress
Agroforestry	Long-term carbon storage	Reduced erosion, microclimate regulation	Diversified income and stable grain yields
Biochar & Organics	Sequestered carbon, reduced chemical dependency	Improved structure and water retention	Enhanced nutrient use efficiency

Way Forward

Promoting soil-smart practices with a focus on reducing carbon footprints is not only an environmental necessity but also a pathway to farmer prosperity. Awareness campaigns, extension services, and policy incentives are essential to scale these practices. By improving soil resilience, farmers can ensure that problem soils contribute to sustainable food grain production while combating climate change.

Conclusion

Problem soils are often seen as barriers to productivity, but with the right management strategies, they can be transformed into resilient and productive systems. Integrating low carbon footprint practices with soil ecosystem service enhancement ensures sustainable food grain production for the future. Healthy soils are the key to a healthy planet, and adopting these practices today will secure food and environmental security for generations to come.

Precision Agriculture for the Future of Modern Farming

Rita Fredericks

CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Precision agriculture (PA) is a new method of farming that applies sophisticated instruments like GPS, GIS, drones, sensors, and data analytics to maximize the use of resources and the yield of crops. Through the application of site-specific management, PA minimizes wastage of water, fertilizers, and pesticides and reduces environmental effects. Using AI, machine learning, and IoT, real-time monitoring, decision-making, and automation are facilitated in crop production. PA not only increases yield and quality but also promotes climate-smart and sustainable agriculture. With increasing global food needs and dwindling resources, precision agriculture brings an inspirational solution to the future of farming.

2. Introduction

Precision agriculture (PA) is a sophisticated farming management system that employs information technology, sensors, GPS, and data analysis to observe and fine-tune crop production. In contrast with conventional agriculture, which uses uniform inputs on fields, precision agriculture sees to it that the correct input (water, fertilizer, pesticide) is put at the correct location, at the correct time, and in the correct amount.

Main Goals of Precision Agriculture:

- Maximize crop yield and productivity.
- Cut down input costs and wastage of resources.
- Enhance sustainable and climate-resilient agriculture.
- Track soil, water, and crop health in real time.

PA combines cutting-edge technology with agronomy to enhance efficiency, profitability, and environmental sustainability in farming systems.

3. Technologies for Precision Agriculture

1. GPS and GIS

Global Positioning System (GPS) offers precise field mapping, and farmers are able to determine precise locations of input application, soil sampling, and yield measurement. Geographic Information System (GIS) aids the study of spatial variability in crop performance, nutrient distribution, and soil

characteristics. GPS and GIS together are the foundation of precision agriculture, allowing for site-specific management, minimizing wastage of resources, and enhancing decision-making for improved crop productivity and sustainability.

2. Remote Sensing

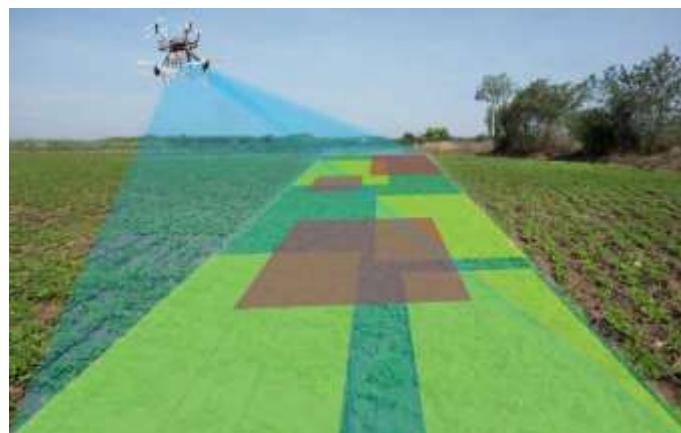
Remote sensing employs satellites, drones, and aerial photography to track crop growth, health, and field status. Remote sensing allows for the detection of nutrient deficiencies, pest attack, water stress, and disease outbreaks at the initial stage. Remote sensing, through real-time large-scale data, allows farmers to apply corrective measures on a timely basis, enhance resource utilization efficiency, and increase yield. Remote sensing technology is essential for proactive, climate-smart, and sustainable farm management.

Source: <https://agriculturepost.com/opinion/emerging-technologies-and-precision-farming-saas-to-design-future-landscape-for-agriculture>

3. Sensors and IoT

Sensors are used in precision agriculture to track soil moisture, nutrient, pH, and crop health indicators.

Site-specific information informs effective irrigation and fertilization. Internet of Things (IoT) devices link sensors, farm machines, and data platforms, allowing real-time monitoring and automatic control. Sensors and IoT combined allow farmers to make informed decisions, minimize input costs, and maximize productivity and sustainability.


4. Variable Rate Technology (VRT)

Variable Rate Technology allows farm equipment to vary the application of fertilizers, pesticides, and irrigation water based on field variability. With the application of the correct input at the correct place and moment, VRT reduces wastage of resources, lowers costs of production, and reduces pollution of the environment. The technology allows for accurate input management, increases crop yield, and promotes sustainable agriculture, hence playing a vital role in precision agriculture.

4. Precision Agriculture Applications

1. Smart Irrigation

Smart irrigation combines sprinkler and drip systems with sensors in the soil to supply water exactly when and where crops require it. Through continuous monitoring of soil conditions, these systems minimize water usage, avoid over-irrigation, and cut wastage. Smart irrigation saves precious water resources while enhancing crop yields and growth, thus being an essential resource for sustainable and climate-resilient agriculture.

Source: <https://www.researchdive.com/blog/6-significant-benefits-of-precision-farming>

2. Nutrient Management

Precision nutrient management in precision agriculture is the process of providing fertilizers based on the soil nutrient content and crop demands. Soil testing, sensors, and GIS-based maps are used by farmers to prevent excess fertilizer usage while maintaining a balanced nutrient supply. Crop uptake efficiency is increased, yields are improved, input costs are reduced, and leaching and pollution are minimized with this practice. Precision nutrient management enables productivity along with environmental sustainability in contemporary farming systems.

3. Pest and Disease Management

Precision agriculture facilitates the early identification of pests and diseases using drones, remote sensing, and imaging sensors. These technologies detect stressed or infected sections early on, enabling site-specific and timely pesticide applications instead of blanket spraying. This results in reduced chemical consumption, cost savings, and less contamination of the environment. By facilitating timely and targeted interventions, precision pest and disease management enhances the protection of crops, increases yields, and promotes safer and more sustainable agricultural practices.

4. Yield Mapping and Monitoring

Yield mapping combines harvesters with GPS to produce high-resolution maps of crop productivity variations in fields. From spatial yield differences, farmers can determine poorly performing areas, measure the performance of management practices, and base management decisions on inputs and interventions on a scientific basis. The technology facilitates site-specific management, increases overall productivity, and leads to more efficient, sustainable, and data-based farming systems.

5. Benefits of Precision Agriculture

Precision agriculture has a lot of benefits by integrating advanced technology with agronomic operations. Its most fundamental advantage is higher productivity since precise observation and control of

soil, water, and nutrients guarantee the best growth of crops and a greater harvest. With techniques such as Variable Rate Technology (VRT), sensors, and intelligent irrigation, PA reduces wastage of fertilizers, water, and pesticides, hence input costs.

Another significant benefit is sustainability. Precision agriculture minimizes environmental pollution, prevents soil degradation, and promotes responsible use of natural resources. With real-time data from sensors, drones, and IoT devices, farmers can make data-driven decisions, enabling timely interventions for irrigation, nutrient application, and pest management. This reduces crop losses and improves overall farm performance.

Further, PA promotes climate-smart agriculture through facilitating the adaptation of farmers to unpredictable weather, drought, and other climate stresses. Through the integration of yield monitoring, GIS mapping, and remote sensing, PA enables site-specific practices that maximize resources and improve resilience. In summary, precision agriculture not only increases productivity and profitability but also ensures sustainability and environmentally friendly farming, establishing it as a pillar of contemporary agriculture.

6. Challenges in Precision Agriculture

In spite of its many benefits, precision agriculture is challenged by a number of factors that can hamper its extensive use. A significant impediment is the high initial cost associated with the acquisition of sophisticated technology like drones, GPS-activated tractors, sensors, and smart irrigation systems. For most farmers, particularly smallholders, the expenditure is a stumbling block.

Another challenge is technical knowledge. Effective use of precision agriculture relies on the ability to interpret data from sensors, drones, and GIS systems, as well as to operate modern machinery. Training and capacity-building programs are essential to equip farmers with these skills.

Connectivity problems also present a major limitation. Most rural places do not have any steady

internet or mobile connectivity, which is important for IoT-connected devices and the movement of real-time data. Data management is also complicated, as masses of data need to be gathered, stored, analyzed, and accurately interpreted to develop meaningful decisions.

Lastly, adaptation and accessibility are challenges, especially for small and marginal farmers who might be unable to adopt precision agriculture without government assistance, subsidies, or cooperative models. Solutions to these challenges in the form of low-cost technologies, training courses, and infrastructure development will be critical for precision agriculture to be inclusive, sustainable, and effective for new farming systems.

7. Future Prospects and Conclusion

The future of precision farming is integrally associated with new technologies that promote efficiency, sustainability, and profitability for farmers. Artificial Intelligence (AI) and Machine Learning (ML) are increasingly being used for predictive crop modeling to help farmers predict yield results, pest invasions, and nutrient deficiencies. Robotics and autonomous machinery are revolutionizing farm work, such as sowing, spraying, and harvesting, to minimize labor reliance and enhance precision.

Big Data platform use enables the integration of soil, weather, and crop data to enable data-driven decision-making and site-specific management. These technologies can optimize inputs, minimize costs, and increase resilience to climate variability. Furthermore, the increase in smart farming solutions available in smallholder systems, both in India and internationally, has the potential to democratize precision agriculture, making it more inclusive and flexible.

8. Conclusion:

Precision agriculture is the future of contemporary farming as it increases productivity, profitability, and sustainability. PA adoption enables farmers to maximize the use of inputs, minimize the

environmental footprint, and respond to climate change. With ongoing technological innovation, capacity building, and support, PA has the potential to transform world agriculture into a more efficient, evidence-based, and sustainable enterprise.

9. References

Gyarmati, G., & Mizik, T. (2020, June). The present and future of the precision agriculture. In *2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)* (pp. 593-596). IEEE.

Hakkim, V. A., Joseph, E. A., Gokul, A. A., & Mufeedha, K. (2016). Precision farming: the future of Indian agriculture. *Journal of Applied Biology and Biotechnology*, 4(6), 068-072.

Mandal, D., & Ghosh, S. K. (2000). Precision farming—The emerging concept of agriculture for today and tomorrow. *Current Science*, 79(12), 1644-1647.

Patil Shirish, S., & Bhalerao, S. A. (2013). Precision farming: the most scientific and modern approach to sustainable agriculture. *Int. Res. J. of Sci. & Eng*, 1(2), 21-30.

Raj, E. F. I., Appadurai, M., & Athiappan, K. (2022). Precision farming in modern agriculture. In *Smart agriculture automation using advanced technologies: Data analytics and machine learning, cloud architecture, automation and IoT* (pp. 61-87). Singapore: Springer Singapore.

Agri Waste to Wealth

DINESH

Lovely Professional University, Punjab

When a harvest is complete, it's not just the crops that are left behind. Fields are filled with stalks, leaves, and straw—often considered a worthless byproduct. For decades, the primary solution for this crop residue has been stubble burning, a fast way to clear land for the next planting. While convenient, this practice releases thick smog, contributes to greenhouse gases, and degrades air quality for millions.

But what if this so-called waste was a hidden treasure? Around the world, farmers and innovators are discovering new ways to transform agricultural leftovers into valuable resources. This "waste-to-wealth" movement is not only cleaning up our environment but also opening up entirely new income streams for rural communities.

Fueling the Future with Stalks and Husks

Many crop residues like rice straw, maize stalks, and sugarcane bagasse are rich in organic material, making them excellent candidates for biofuel production. By converting these leftovers into biogas, bioethanol, or compressed biogas (CBG), we can create clean energy to power vehicles, factories, and even homes.

In India, for instance, new refineries are being built to process paddy straw into clean fuel. Instead of burning their stubble, farmers can now sell it to these facilities, earning a profit while reducing air pollution. Brazil has long used sugarcane waste to power its transport sector, proving that this model is not just a theory, but a viable, large-scale solution.

Bioplastics: A Sustainable Alternative

As a global plastic pollution crisis looms, agriculture offers an unlikely but powerful solution. The natural starches and fibers found in crop residues can be

extracted and used to produce biodegradable plastics that break down naturally and safely.

Forward-thinking companies are now developing products from materials like wheat bran, rice husks, and sugarcane fibers to create sustainable cutlery, packaging, and shopping bags. These innovations could drastically reduce our reliance on traditional petroleum-based plastics. Imagine a future where your takeaway container was grown in a field, not manufactured in a factory.

Revitalizing the Farm Itself

Not all residues need to leave the farm to be useful. Many agricultural by-products are a fantastic source of nutrition for livestock. Groundnut haulms and maize stover can be processed into silage, a low-cost, high-quality feed for dairy animals.

These leftovers can also be returned to the soil to enhance its health. By converting residues into compost or biochar, farmers can create rich soil amendments that improve fertility, boost water retention, and help the land sequester carbon. This process truly completes the agricultural cycle, ensuring farming regenerates the land instead of depleting it.

Farming's Role in High Fashion

An unexpected industry finding value in farm waste is fashion. Natural fibers from pineapple leaves, banana stems, and coconut husks are being spun into sustainable fabrics and leathers. Even mushrooms are being cultivated into a durable, leather-like material known as fungi leather.

As major fashion brands increasingly prioritize sustainability, these innovative materials offer a new direction for the industry. For farmers, this means that their crop residues could one day be crafted into high-

end handbags, shoes, or jackets, transforming field waste into a valuable export.

Building a Circular Agricultural Economy

The ultimate goal is to build a circular farm economy where every byproduct has a purpose. To make this vision a reality, three key elements are essential:

- Infrastructure: We need to build local collection and processing centers that can efficiently manage crop residues at the village level.
- Policy: Government and industry support, in the form of incentives and clear policies, will be crucial to encourage investment in these new waste-based industries.
- Education: Farmers need to be educated about the economic and environmental benefits of managing their residues and learn to see them as a valuable resource rather than a nuisance.

When these components come together, agriculture can shift from being a source of pollution to becoming a powerful engine for climate solutions.

The Future of Farming is Green

The days of smoke-filled skies from stubble burning don't have to define the future of farming. With the right technologies and support systems, agricultural residues can be transformed into fuels, plastics, textiles, and fertilizers. By seeing waste as an asset, agriculture can take on a new, more powerful role in building a profitable, sustainable, and climate-friendly economy.

Market Mapping: Using Statistics to Identify Untapped Agri-Business Niches

Nithin Baby and Christin Mathew

B.Sc. (Hons.) Agriculture Graduates, Kerala Agricultural University

Imagine a world in which farmer no longer guess what to grow, but make decisions backed by real time data. A world where a smallholder in Kerala studies about the untapped opportunities and the demand across the globe for jackfruit flour and tries to export it with the help of real time data and not through the traditional way, the chance for him to become a successful entrepreneur is high. Being in a world with evolving agricultural landscape, where markets are becoming competitive day by day, identifying the untapped market opportunities is very crucial for the success of any enterprise. Its not just a dream, but a reality that can be achieved with the help of market mapping through statistics, which is a powerful tool that helps to uncover the agri-business niches waiting to be tapped.

What is market Mapping in agriculture?

Market mapping means the use of real time data and statistics to visualise and understand the agriculture value chain. It involves the collection, processing and interpretation of numerous data to analyse the key players in the market, analyse the market gaps, what are the consumer demands and to analyse the demand-supply imbalances. It can transform raw data into useful and actionable plans, which helps in strategic decision making.

As we all know that we can obtain enormous amount of data from agriculture, which includes the production statistics, current market prices and price fluctuations, weather patterns, consumer demand, current scenario of world trade etc. With these data combining the traditional market research methodologies and advanced statistical tools and methods like regression analysis, cluster analysis, time series forecasting and machine learning algorithms, we can process the data to reveal the patterns and trends and to arrive at a conclusion, which can never be obtained with the help of traditional market research approaches alone.

Statistical Methods for Agricultural Market Analysis

Descriptive statistics provide the simplest way to understand agricultural market data by showing

averages, middle values, common trends, and the spread of prices. For example, looking at onion or paddy prices across markets quickly reveals whether they are stable or highly volatile, and charts like

histograms or boxplots make these patterns clearer. Beyond such basics, surveys are often used to gather real-world insights into farmer participation, consumer preferences, and demand for products like organic vegetables, and proper sampling methods ensure that these findings represent the wider population. As markets are influenced by seasons and climate, time series analysis becomes important for tracking changes over time and forecasting future trends, with models like moving averages, ARIMA, and SARIMA helping predict crop prices and arrivals, though reliable long-term data is often a limitation. Regression and correlation techniques go further by identifying how factors such as income growth, urbanization, or population changes affect demand, giving early signals about which crops may

become more profitable in the future. Together, these statistical tools form the foundation for smarter decisions in agriculture and agribusiness.

Identifying Market Gaps and opportunities.

Understanding supply and demand is key to spotting opportunities in agriculture. When consumption grows faster than local production, it creates a gap that entrepreneurs can fill through better production, processing, or distribution. By comparing projected demand with expected supply of different commodities, and using advanced econometric models, it becomes possible to identify future market niches. Alongside this, examining the agricultural value chain helps reveal inefficiencies where even small improvements in quality or efficiency can add significant value. Looking closely at profit margins, cost structures, and bottlenecks across different stages of the chain highlights areas where interventions could strengthen competitiveness and create new opportunities. Geography also plays an important role in agribusiness planning, and tools like GIS and statistical modelling make it possible to find regions with untapped potential. By analysing factors such as infrastructure, transportation costs, market distance, and price variations across locations, entrepreneurs can choose the best areas to establish their ventures. In this way, supply-demand analysis, value chain studies, and geographic insights together provide a practical roadmap for building successful and sustainable agribusinesses.

Current Scenario of Agricultural Market Data and Analysis

Agricultural market analysis is moving away from slow, paper-based systems toward faster, technology-driven methods. Earlier, farmers and policymakers depended mainly on government reports and wholesale records, which were often delayed and less reliable. Today, platforms like e-NAM and mobile apps provide daily price updates and even allow farmers to connect directly with buyers. Satellites

and drones help in estimating crop acreage and forecasting yields, while IoT devices monitor soil, weather, and storage conditions, creating real-time data for better decisions. Governments and global organizations are also investing in digital agriculture to make markets more transparent and farmer-friendly. However, many small farmers still face barriers such as limited internet access, lack of smartphones, or digital skills. Data scattered across platforms and concerns about privacy also remain challenges. The real opportunity lies in ensuring that these digital tools reach smallholders and empower them to benefit from open, efficient, and technology-supported agricultural markets.

Conclusion

Statistical market mapping serves as an effective method for discovering unexploited opportunities in the agribusiness sector within a progressively intricate and competitive agricultural environment. By methodically gathering and analysing extensive datasets, agricultural entrepreneurs and companies can reveal overlooked market segments, refine their strategies, and secure lasting competitive advantages.

As agricultural markets continue to evolve swiftly, organizations that excel in statistical market mapping will be ideally positioned to recognize and take advantage of new opportunities. Investing in data analytics and market intelligence systems lays the groundwork for informed decision-making and strategic achievement in the ever-changing agricultural industry. The advancement of agricultural business development is increasingly reliant on the capability to convert data into practical insights. Statistical market mapping offers the analytical tools and methodological framework needed to traverse this data-rich landscape and uncover the hidden opportunities that will propel future agricultural innovations and business achievements.

Urban Agriculture: Growing Food in Limited Spaces

¹ Dr. Khan Chand*, ²Subhash Verma, ³Titus Dalang K Momin, ⁴Rita Fredericks, ⁵Anil Kumar

¹ Professor, Department of Agricultural Engineering, School of Agricultural Sciences, Nagaland University, Medziphema Campus- 797106

^{2,5}Assistant professor, School of Agriculture, Eklavya University

³Field Inspector, Meghalaya State Organic certification body

⁴CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Urban agriculture is defined as production, processing, and marketing of food within and near cities, including activities such as rooftop farming, vertical growing, hydroponics, aquaponics, backyard farming, and community gardens. With increasing urbanization, population increases, and dwindling arable land, it has come to the forefront as a sustainable means of increasing food and nutritional security, decreasing reliance on extensive supply chains, and enhancing environmental resilience. Urban agriculture is advantageous in several ways, such as better access to fresh and healthy produce, decreased food miles, reducing urban heat islands, job creation, recycling of wastes, and increased community engagement. Kitchen gardens, rooftop farming, vertical systems, and soil-less culture are among the methods used to optimize scarce urban space and resources, and an array of crops ranging from leafy greens and vegetables to root crops, herbs, and microgreens are ideally suited to urban environments. In spite of its potential, its limitations like limited space, cost-intensive, lack of technical know-how, and policy-based limits prevent mass adoption. The future hinges on capacity development, supportive policies, incorporation into smart city planning, and inclusive youth and women participation.

Introduction

Urban agriculture is the production, processing, and marketing of food within and around cities. It is a broad spectrum of practices that include rooftop farming, vertical cultivation, hydroponic and aquaponic farming, backyard farming, and community garden farming. Due to fast urbanization, population expansion, and shrinking amounts of arable land, urban agriculture has emerged as a creative and sustainable means for providing food to city dwellers. It not only increases the availability of food but also brings together ecological, social, and economic advantages, making cities resilient to climate change, price volatility of food, and disruption of supply chains.

The Significance of Urban Agriculture

1. Guarantees Food and Nutrition Security

Urban agriculture enhances the availability of fresh, safe, and nutritious fruits, vegetables, and other food items for urban consumers. By reducing the distance

from production to consumption, it ensures timely supply and minimizes post-harvest loss.

2. Reduces Dependence on Long Supply Chains

Agriculture in urban areas reduces the reliance on long-distance shipment from rural environments, which is costly and susceptible to interference in the event of natural disasters or pandemics. Urban agriculture reduces this reliance by growing the food closer to the consumers so that supply and price remain stable.

3. Enhances Environmental Sustainability

Through the use of vacant city areas, roofs, balconies, and poor-quality land, urban agriculture provides greenery and biological diversity. Urban plants use carbon dioxide, lower dust and pollution levels, and decrease the urban heat island effect, thereby enhancing air quality and microclimate.

4. Creates Employment and Encourages Entrepreneurship

Urban agriculture offers livelihood opportunities in nursery rearing, rooftop farming activities, organic vegetable growing, mushroom production, and value-added processing. It promotes small-scale agribusinesses and green jobs for women and youth, promoting economic inclusion.

5. Fosters Community Participation and Awareness

School-farming and community garden programs involve citizens in food cultivation. These activities encourage healthy diet awareness, organic farming, and conservation of the environment as well as enhance social cohesion among diverse city populations.

6. Encourages Effective Use of Resources

Urban agriculture also depends on new-age technologies such as hydroponics, drip irrigation, and recycling of wastewater. These methods maximize the use of scarce land, water, and energy resources while reinforcing circular economy concepts by transforming organic waste into compost or biogas.

7. Supports Climate Resilience

Cities are extremely exposed to climate-related problems such as heat waves, flooding, and food supply disruption. Urban agriculture is a buffer that increases resilience through local food system diversification and minimizing the reliance on external inputs.

Methods of Urban Agriculture

Kitchen Gardens

Backyard, balcony, windowsill, and rooftop food production on a small scale is the most elementary type of urban agriculture. Kitchen gardens provide families with daily vegetables, herbs, and fruits needs, lowering market dependency and enhancing diets.

Rooftop Farming

City rooftops can be converted into productive areas for hydroponics, raised beds, or container gardens. This method maximizes unused urban surfaces, minimizes building heat, and brings fresh food nearer home.

Vertical Farming

Vertical farming relies on stacked layers or towers to cultivate crops, commonly under controlled conditions. Methods such as hydroponics, aeroponics, and aquaponics achieve maximum space efficiency and high productivity per unit area, making it suitable for populous cities.

Community Gardens

Communal plots of land within residential areas, schools, or organizations enable communities of individuals to grow food together. Hydroponics and Aquaponics These gardens foster socialization, exchange of knowledge, and increased community cohesion while offering access to fresh fruits and vegetables.

Hydroponics and Aquaponics

Soil-less cultivation techniques are becoming increasingly popular in urban areas. Hydroponics cultivates plants in nutrient-rich water, whereas aquaponics combines fish production with hydroponic systems, producing a closed-loop system that saves water, minimizes the space required, and increases yields.

Crops Suitable for Urban Agriculture

- ✓ **Leafy greens:** spinach, lettuce, fenugreek, coriander, amaranthus.
- ✓ **Fruit vegetables:** tomato, capsicum, chili, brinjal.
- ✓ **Root crops:** carrot, radish, beetroot, turnip.
- ✓ **Cucurbits:** bottle gourd, bitter gourd, cucumber, ridge gourd.

- ✓ **Herbs and medicinal plants:** basil, mint, aloe vera, lemongrass, tulsi.
- ✓ **Microgreens:** mustard, broccoli, and wheatgrass, which are nutrient-dense and quick-growing.

Best Practices in Urban Agriculture

Nutrient Recycling

Utilize organic compost, vermicompost, and decomposed kitchen waste to enrich the soil and close the nutrient cycle sustainably.

Efficient Water Management

Implement drip irrigation, sprinkler systems, and greywater recycling to minimize water losses in urban farms.

Crop and Variety Selection

Use short-duration, high-yielding, and resistant crop varieties attuned to the local climate and small spaces.

Pest and Disease Management

Adopt Integrated Pest Management (IPM) through the integration of cultural practices, biological control agents, and organic biopesticides to produce safe and chemical-free food.

Community and Family Engagement

Engage families, community groups, and schools in agricultural cultivation to access common responsibilities, shared costs, and awareness of healthy eating habits.

Application of Technology

Integrate mobile-based advisory applications, irrigation sensors, and low-cost hydroponic sets in order to boost efficiency and productivity in urban farming.

Challenges of Urban Agriculture

Limited Space and Availability of Sunlight

Urban agriculture is usually plagued with space limitations as a result of dense population and urban development. High-rise buildings can also interfere with sunlight, hindering crop growth and yield.

High Initial Capital

Sophisticated practices such as hydroponics, aquaponics, and vertical farming demand substantial initial outlays of equipment, technology, and upkeep, making them less affordable to low-income families.

Lack of Technical Expertise

Most urban residents are not aware and trained in contemporary agriculture approaches. Low technical competency in crop management, pest management, and resource utilization lowers the chances of their rapid adoption.

Policy and Regulatory Barriers

Policies for land use, construction permits, or water consumption in certain cities serve as roadblocks to establishing urban farms. Lack of proper guidelines and institutional backing further limits expansion.

Way Forward

Capacity Building and Training

Conducting workshops, training activities, and demonstration plots can equip citizens with technical skills necessary for sustainable urban agriculture.

Facilitating Policies and Incentives

Governments must offer subsidies, tax incentives, and policy environment conducive to rooftop farming, community gardens, and vertical farm projects.

Incorporation in Smart Cities

Urban farming must be incorporated in smart city planning to ensure optimal land use, waste recycling,

and sustainable food systems as part of urban infrastructure.

Empowerment of Youth and Women

Encouraging youth and women participation can generate green jobs, enhance nutritional security, and enhance grassroots engagement in urban agriculture projects.

Conclusion

Urban agriculture is more than a mere act of production—it is envisioning urban living with healthier diets, more resilient communities, and greener ecosystems. By adopting new technologies,

productive resource allocation, and participatory community involvement, cities have the potential to become centers of sustainable green production. Together with civic engagement, government support, and organizational collaboration, urban agriculture can retool cities to become autonomous, eco-friendly, and healthful living environments for the future.

An Intricate Defence Mechanisms of Silkworm, *Bombyx mori* L.: Overview of its immune system

Likhith Gowda M¹, Sahana K. P², Mahesh R³, Anil Pappachan⁴ and Manthira Moorthy S⁵.

CSB- P2 BSF, Gavimata¹, CSB- P2 BSF, Dharmapura², CSB-REC, Gujarat, CSB- P2 BSF, Yeligiri hills⁴, CSB-NSSO, Bangalore⁵

Silkworm, *Bombyx mori* L. like other insects, possesses a sophisticated innate immune system that protects it from a diverse array of pathogens. The silkworm immune system, broadly categorized into humoral and cellular immune responses, alongside the crucial process of cell apoptosis.

Humoral Immune Response: Molecular Recognition and Soluble Effectors

The humoral immune system of the *B. mori* relies on the recognition of conserved microbial components, known as pathogen-associated molecular patterns (PAMPs), by **pattern recognition receptors (PRRs)**. This recognition event triggers a cascade of downstream signalling pathways.

- **Serine Protease Cascade:** Activation of PRRs often leads to the activation of serine protease cascades. These enzymatic cascades amplify the initial recognition signal and are crucial for the activation of downstream effectors, including the prophenoloxidase (proPO) activation system.
- **Toll, Imd, and Jak Pathways:** These are the major signalling pathways and will be initiated upon pathogen recognition:
 - **Toll pathway:** Toll-like receptors (TLRs) play vital roles in the innate immune system by recognizing PAMPs derived from different microbes. Primarily involved in defence against fungi and Gram-positive bacteria. Activation of Toll receptors triggers intracellular signalling cascades leading to the activation of transcription factors that induce the expression of antimicrobial peptides (AMPs).

- **Imd pathway:** The Imd (Immune deficiency) pathway is a major defense mechanism against Gram-negative bacteria. Activation of Imd receptors initiates a signalling cascade that culminates the activation of transcription factors responsible for AMP gene expression.
- **Jak pathway:** The Janus kinase (Jak)-signal transducer and activator of transcription (STAT) pathway plays a role in various immune responses, including antiviral defense and the regulation of hemocyte differentiation.
- **RNAi (RNA interference):** While positioned alongside the humoral response, RNAi is an important antiviral defense mechanism. It involves the recognition of double-stranded RNA (dsRNA), often produced during viral replication, leading to its degradation and silencing of viral genes.
- **Prophenoloxidase Cascade and Melanization:** The proPO cascade is a crucial humoral defense mechanism. The activation reaction of prophenoloxidase is elicited in the plasma fraction of haemolymph by Gram positive or Gram-negative bacterial cell walls. Upon activation, proPO is converted to its active form, phenoloxidase (PO) which catalyzes the synthesis of melanin, a dark pigment that can encapsulate pathogens, generate cytotoxic intermediates and aid in wound healing.
- **Antimicrobial Peptides (AMPs):** The Toll, Imd, and potentially other pathways

ultimately lead to the transcriptional upregulation and secretion of a diverse repertoire of AMPs. These small peptides exhibit broad-spectrum antimicrobial activity, directly killing or inhibiting the growth of bacteria, fungi, and viruses.

Cellular Immune Response: Hemocyte-Mediated Defense

The cellular immune response in *B. mori* is primarily mediated by hemocytes, the insect blood cells. Key cellular defense mechanisms mediated by hemocytes are briefed below:

- **Hemocyte Differentiation:** Upon immune challenge, hemocytes can undergo differentiation into specialized cell types with distinct functions, enhancing the overall immune response.
- **Reactive Oxygen Species (ROS) Production:** Activated hemocytes can produce ROS, such as superoxide radicals and hydrogen peroxide. These highly reactive molecules can directly kill or damage invading pathogens.
- **Phagocytosis:** A crucial cellular defense mechanism where hemocytes engulf and internalize smaller pathogens, cellular debris, and foreign particles. The engulfed material is then destroyed within the hemocyte's lysosomes.
- **Nodulation:** When an insect confronted with a larger number of pathogens, hemocytes can aggregate and encapsulate them, forming nodules. This process isolates the pathogens and prevents their spread within the insect's body.
- **Encapsulation:** Similar to nodulation, encapsulation involves the layering of hemocytes around larger foreign objects or parasitoid eggs that are too large to be

phagocytosed. This process effectively isolates and suffocates the invader.

Cell Apoptosis: Programmed Cell Death in Immunity

Apoptosis or programmed cell death, is a fundamental process in the *B. mori* immune system. It serves several critical roles in defense:

- **Elimination of Infected Cells:** Apoptosis can be triggered in cells infected by viruses or intracellular bacteria, preventing pathogen replication and spread.
- **Regulation of Immune Responses:** Apoptosis of immune cells can help to resolve inflammatory responses and prevent excessive tissue damage.
- **Development and Homeostasis:** Indirectly apoptosis is essential for proper development and maintenance of the immune system.

There are three major pathways that can lead to apoptosis in *B. mori*:

- **Mitochondrial Pathway:** This pathway is often triggered by cellular stress or damage, leading to release of pro-apoptotic factors from the mitochondria and the activation of caspases, the executioner enzymes of apoptosis.
- **Death Receptor Pathway:** This pathway is initiated by the binding of specific ligands to death receptors on the cell surface, activating intracellular signaling cascades that lead to caspase activation and apoptosis.
- **Endoplasmic Reticulum Pathway:** Stress in the endoplasmic reticulum (ER), such as the accumulation of misfolded proteins, can trigger the unfolded protein response (UPR), which can ultimately lead to apoptosis if the stress is not resolved.

Conclusion:

Immune system of mulberry silkworm, *B. mori* employs a complex and interconnected network of humoral and cellular responses, complemented by the crucial process of cell apoptosis. The intricate defense system allows the silkworm to recognize and eliminate a wide range of pathogens effectively, playing a vital role in its survival and health. Understanding these mechanisms is crucial for developing strategies to protect the silkworm from different diseases and to improve silk production.

References.

Gandhe A S, Janardhan G, Nagaraju J. 2007. Immune upregulation of novel antibacterial proteins from silkworms (Lepidoptera) that resemble lysozymes but lack muramidase activity. *Insect Biochemistry and Molecular Biology* 37: 655–666.

Ikeda M, Hamajima R, Kobayashi M. 2015. Baculoviruses: diversity, evolution and manipulation of insects. *Entomological Science* 18: 1–20.

Kanost, M.R. & Jiang, H. 2015. Clip-domain serine proteases as immune factors in insect hemolymph. *Current Opinion in Insect Science* 11: 47–5.

Lee K S, Bo Y K, Jin B R. 2015. Differential regulation of tyrosine hydroxylase in cuticular melanization and innate immunity in the silkworm *Bombyx mori*. *Journal of Asia-Pacific Entomology* 18: 765–770

Yang Y, Tang H, Zhang Y, Penglu F, Yao Q, Chen K. 2018. Research progress on the immune mechanism of the silkworm *Bombyx mori*, *Physiological Entomology* 43: 159–168.

Yi H S, Ma X P, Pan M H, Cheng L U. 2017. Eukaryotic expression and function analysis of *Bombyx mori* inhibitor of apoptosis protein (BmIAP) gene. *Acta Entomologica Sinica* 60: 18–23.

Yin L. 2014. Analysis of Hemolymph Melanization and Melanin Metabolic Intermediate in Silkworm Larvae Induced by Exogenous Microorganisms. Doctoral Dissertation of Southwest University, China.

Collaborative Platforms: Integrating e-Crop Data with Agricultural Research

Rita Fredericks

CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

The merging of e-Crop data with agricultural research on collective platforms is reshaping contemporary agriculture. The platforms bridge the gap among farmers, researchers, policymakers, and agri-tech industries through real-time data transfer and evidence-based decision-making. They integrate farmer-level field data with research knowledge to boost crop productivity, enhance soil and water management, improve pest and disease forecasting, and facilitate climate-smart agriculture. The integration overcomes the research-extension-farmer gap, speeds up innovation, and promotes sustainability. With challenges such as data privacy, connectivity, and standardization, collaborative e-Crop platforms have huge potential to spur digital inclusivity, food security, and agricultural resilience.

2. Introduction

Agriculture is stepping into a new digital age where e-Crop systems and data-based tools are taking center stage in boosting productivity, sustainability, and resilience. E-Crop platforms gather real-time data on soil status, crop development stages, weather forecasts, pest infections, irrigation calendars, and market prices. But the true value of e-Crop data is unleashed only when it's combined with collaborative platforms bridging farmers, researchers, policymakers, and technology developers. Collaborative platforms facilitate sharing, analysis, and application of e-Crop data for evidence-based decision-making. By integrating farmer-level field observations with institutional farm research, these systems promote innovation, minimize yield gaps, and enhance sustainable agricultural development.

3. Definition of Collaborative Platforms in Agriculture

A collaborative agriculture platform refers to an electronic system with the aim of involving various stakeholders for the purposes of sharing, processing, and using data, information, and technologies for enhancing agricultural systems. For agriculture, such platforms combine various streams of information like:

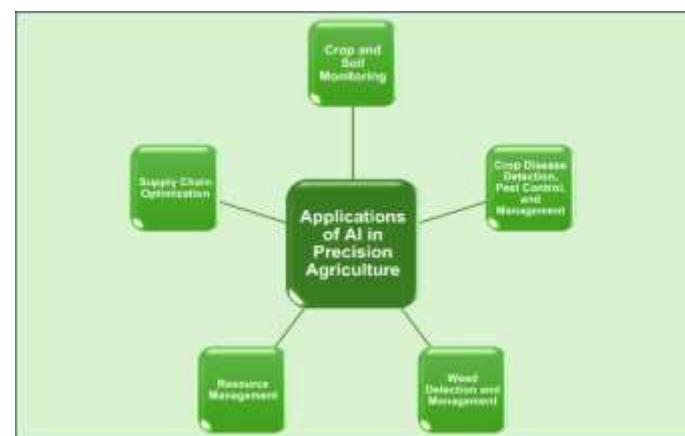
- Farmers' field data in real-time covering crop development, soil moisture content, pest/disease incidence, and irrigation methods.
- Experimental data from variety trials, nutrient management research, soil fertility tests, and climate resilience studies by research institutions.
- Agricultural scheme data, subsidies, weather forecasts, advisories, and market linkages by government and extension.
- Seed industry trials, fertilizer efficiency research, drone and IoT-based monitoring, and agri-tech startups' innovation contributions by the private sector.
- By bridging these actors, cooperative platforms serve as intermediaries between e-Crop systems and agricultural research. They build a real-time feedback cycle: farmer behavior and farm-level observations feed into research agendas, while the results of science are translated into actionable advice and returned to farmers in real time. This live two-way exchange speeds up technology transfer, enhances the use of resources, promotes climate-smart agriculture, and boosts total farm productivity. Finally, collective agricultural platforms are the cornerstone of digital agriculture, enabling

inclusivity, sustainability, and innovation throughout the sector.

Source:<https://www.agmatix.com/blog/open-source-agricultural-data-collaboration-and-innovation>

4. Significance of Coupling e-Crop Data with Farming Research

4.1 Decision Making Based on Data


Interfacing e-Crop data with collaborative portals enables scientists to process millions of live farmer observations on soil condition, plant growth, and weather, and derive insights. Large-scale data enable the creation of zone-specific, need-based interventions with recommendations being contextualized for various agro-climatic zones. With data analytics and predictive models, scientists and policymakers can make informed, timely choices and improve productivity, sustainability, and farmer resilience.

4.2 Crossing Research–Extension–Farmer Divide

Collaborative platforms are important for bridging the gap between extension, research, and farmers. Through enabling rapid dissemination of research outputs, the collaborative platforms ensure that advisories, innovations, and best practices reach farmers in real time. Farmers' field-level feedback and experiences also feedback to researchers, improving ongoing studies. This two-way process reinforces technology adoption, boosts innovation, and improves the relevance of agricultural research.

4.3 Climate-Smart Agriculture

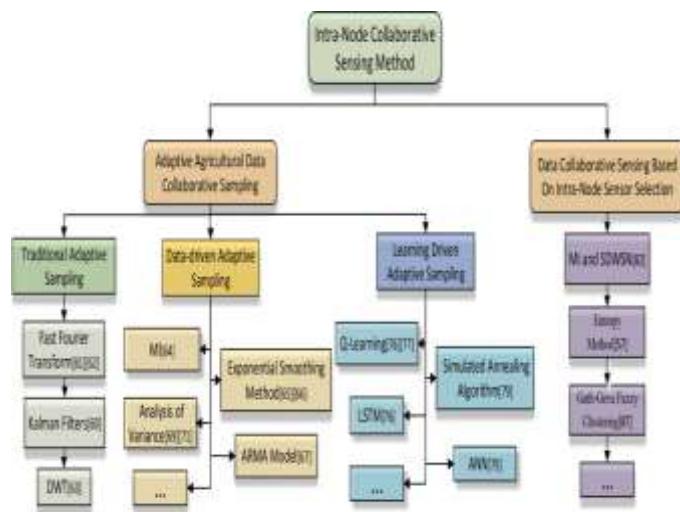
Integration of e-Crop weather data with crop simulation models in collaborative platforms greatly improves predictive accuracy for climate-related hazards like droughts, floods, and pest infestations. Such information facilitates timely advisories and anticipatory interventions, minimizing losses and protecting yields. By facilitating adaptive practices such as judicious use of water, stress-resistant varieties, and sustainable resource management, such platforms enhance climate resilience and assist farmers in dealing with rising variability in weather patterns.

Source: <https://link.springer.com>

4.4 Sustainable Use of Resources

Cooperative platforms maximize the utilization of valuable resources by combining farmer-level e-Crop data with research databases. Soil health cards, irrigation calendars, and fertilizer plans become more accurate and location-based, minimizing wastage of inputs and costs of production. This integration facilitates balanced fertilizer application, optimal water use, and sustained soil fertility. Finally, it enhances sustainable use of resources, ensuring greater productivity while preserving natural resources and ensuring environmental integrity.

4.5 Market Intelligence and Policy Support


Data from E-Crop, when processed using collaborative platforms, gives policymakers real-

time information regarding production trends, supply-demand imbalances, and prospective surpluses or deficiencies. This information assists in the development of proactive policies, minimizes post-harvest losses, and enhances storage and marketing systems. By facilitating reliable forecasts and enhancing market linkages, the platforms enable farmers and consumers alike, ensuring equitable prices, minimized wastage, and enhancing overall efficiency of the agricultural value chain.

5. Elements of Joint e-Crop Research Platforms

Joint e-Crop research platforms are composed of several components that work together to support efficient data collection, analysis, and dissemination for agriculture innovation.

Source: <https://www.sciencedirect.com>

1. Data Collection Interfaces – Field-level data is collected through mobile applications, IoT sensors, drones, and satellite imaging. These technologies provide real-time data on crop growth, soil moisture, nutrient content, and pests.

2. Centralized Data Repository – A cloud-based repository supports the storage of huge amounts of data from various stakeholders in a safe manner, and made easily accessible for analysis.

3. Analytical Tools and AI Models – Sophisticated machine learning and data analytics are used for yield

prediction, early disease identification, and optimization of inputs like water, fertilizers, and pesticides.

4. User Dashboards – Personalized dashboards deliver context-specific information: farmers get advisories, researchers get experimental results, and policymakers get aggregated insights for policy-making.

5. Feedback and Advisory Systems – They establish two-way communication, where farmers provide observations and get real-time advice on crop and resource management.

6. Data Security and Ownership Mechanisms – Clear frameworks guarantee farmer approval, data privacy, and responsible use of agricultural data, enhancing credibility and broader adoption.

6. Applications in Agricultural Research

e-Crop collaborative research platforms have far-reaching applications in various areas of agricultural science, bridging the gap between farm realities and research breakthroughs.

6.1 Crop Improvement and Breeding

Mass phenotypic and environmental information gathered from farmers' fields can speed up breeding programs. Through examining performance under varied agro-climatic conditions, scientists can more efficiently identify stress-tolerant and high-yielding genotypes. This aids in the creation of varieties that are more resistant to drought, heat, pests, and diseases.

6.2 Soil and Water Management

Sensor-based e-Crop information about soil fertility, moisture, and nutrient dynamics can be combined with research results to create accurate fertilizer and irrigation advice. This provides the best usage of resources, avoids wastage, enhances the health of the soil, and increases the efficiency of water use in irrigated as well as rainfed systems.

6.3 Pest and Disease Management

E-Crop platforms with AI and predictive modeling can identify an outbreak of pests or diseases in their early stages. Scientists can test these models, improve forecasting accuracy, and apply the information for breeding or suggesting resistant crop varieties. Early detection also allows interventions to be conducted in a timely manner to minimize losses in crops.

6.4 Precision Agronomy

Agronomic research trials and field-level observations combined provide the basis for site-specific nutrient management (SSNM) and other precision agriculture practices. This enables site-specific prescribing based on soil type, crop growth stage, and local climate conditions, thus enhancing productivity and sustainability.

6.5 Climate and Sustainability Studies

E-Crop information on weather patterns, greenhouse gas emissions, and crop responses is supportive of climate-related research. It allows researchers to determine carbon sequestration potential, analyze sustainable agriculture practices, and develop climate-smart interventions to minimize the environmental impact of agriculture.

7. Case Studies and Global Examples

E-Crop platforms in partnership with other e-Crop instances have been implemented in many countries, showing that they have the potential to improve agricultural productivity, integrate research, and provide policy support.

India's e-NAM and e-Crop Systems

Electronic National Agriculture Market (e-NAM) and linked e-Crop platforms bring farmer-level databases together with market information systems. This integration enhances price transparency, enables better-informed selling decisions by farmers, and links production information with policy and

research planning. By integrating real-time crop and market data, these platforms lower information asymmetry and increase market efficiency.

AP Farmer First Initiative (Andhra Pradesh)

Farmer First in Andhra Pradesh integrates Zero Budget Natural Farming (ZBNF) farmer data into research designs. Combining field-level information with state-level agricultural research allows policymakers to create improved program designs, customize extension services, and encourage sustainable agriculture practices. It shows the importance of multi-stakeholder platforms in overcoming the research–policy–farmer gap.

European Union's Smart AgriHubs

The EU's Smart Agri Hubs initiative brings together farmers, agribusiness, and research institutions using digital innovation hubs. These hubs promote the sharing of knowledge, field data, and tech solutions, speeding up the uptake of precision agriculture, IoT, and AI-based farming methodologies in Europe.

USA's USDA-NASS & Climate Field View

In the United States, USDA-NASS crop statistics are merged with private e-Crop platforms such as Climate FieldView. Such a combination facilitates research-based policy-making, early warning systems, and precision farming interventions. Advisories become specific to farmers, while researchers receive huge datasets for climate, pest, and yield research work.

8. Challenges in Integration

Despite the large potential of collaborative e-Crop platforms, a number of challenges complicate their successful integration with farming research and field-level practices.

Data Standardization Challenges

Platforms tend to employ diverse data structures and formats, complicating the integration of datasets from multiple sources. A lack of consistency in the

recording of crop, soil, and weather data reduces interoperability and hinders analysis by region and institution.

Connectivity Holes

Most rural locations continue to have limited or undependable internet connectivity, limiting real-time data availability and prompt distribution of advisories. Delays in updates due to poor network infrastructure diminish the usefulness of digital tools for farmers and researchers.

Farmers might be reluctant to provide field-level information because of concerns about misuse, unauthorized usage, or commercialization without authorization. Data confidentiality and secure management are key to establishing trust and achieving large-scale participation.

Capacity Building

Farmers, extension officers, and even researchers themselves could be deficient in knowledge to exploit digital tools properly. Lack of awareness and skill development, in the absence of proper training, results in low adoption of collective platforms, keeping their decision-making impact limited.

Institutional Coordination

Several stakeholders, such as government institutions, research centers, private companies, and NGOs, tend to work in isolation. Such a lack of coordination minimizes synergy, slows down policy integration, and hinders the free exchange of data from one platform to another.

These issues need to be overcome by using standardized protocols, enhanced connectivity, robust data governance, skill development initiatives, and institutional coordination to unlock the full potential of collaborative e-Crop platforms for reshaping the agricultural sector.

9. Future Prospects

Collaborative e-Crop platforms have huge potential to redefine the future of agriculture by utilizing emerging technologies, inclusive policies, and creative partnerships.

AI and Big Data Analytics

Advanced analytics and artificial intelligence can analyze huge amounts of e-Crop data in real time. Predictive models for yield predictions, pest and disease outbreaks, and climate effects facilitate forward-looking decision-making, reducing crop losses and optimizing resource utilization.

Block chain Integration

Block chain technology provides secure, transparent, and tamper-proof exchange of agricultural information. Farmers, policymakers, and researchers can rely on the authenticity of exchanged information, supporting traceability, market connections, and safe transactions.

Open Data Policies

Open data initiatives aided by government can offer researchers and innovators access to holistic data sets for agriculture. Evidence-based research, technological innovation acceleration, and multi-institutional problem-solving are promoted by open data policies.

Cross-Sector Partnerships

More cooperation among private agri-tech companies, public research centers, and extension agencies can facilitate the development, deployment, and uptake of digital technologies. These collaborations create innovation ecosystems that advance the interests of farmers, researchers, and policymakers equally.

Farmer-Centric Innovations

Platforms in the future will prioritize enabling smallholders through developing affordable, easy-to-

use, and locally relevant tools. This allows even marginal farmers to benefit from digital agriculture through enhanced productivity, sustainability, and livelihoods.

9. Conclusion

Collaborative platforms merging e-Crop data with farm research are a paradigm shift in contemporary farming systems. By bringing forth a dynamic knowledge ecosystem, they connect the realities of fields with scientific innovation. This convergence not only speeds up research innovations but also enhances resilience, sustainability, and inclusiveness in farming. Meanwhile, for developing countries like India where smallholders are predominant, these collective e-Crop platforms can democratize access to technology, enhance productivity, and secure food and nutritional futures.

References

Boahen, J., & Choudhary, M. (2024). Advancements in precision agriculture: Integrating computer vision for intelligent soil and crop monitoring in the era of artificial intelligence. *Int. J. Sci. Res. Eng. Manag*, 8, 1-5.

Molinari, F. A., Blanco, A. M., Vigna, M. R., & Chantre, G. R. (2020). Towards an integrated weed

management decision support system: A simulation model for weed-crop competition and control. *Computers and Electronics in Agriculture*, 175, 105597.

Saifuddin, M. D., Rama Devy, M., & Rao, M. S. (2024). Knowledge of farmers on services rendered by Rythu Bharosa Kendras (RBKs): Test development and assessment. *Indian Res J Ext Edu*, 24(4), 89-96.

Mithra, V. S. (2018, November). Electronic Crop (e-Crop): An Intelligent IoT Solution for Optimum Crop Production. In *International Conference of ICT for Adapting Agriculture to Climate Change* (pp. 177-189). Cham: Springer International Publishing.

George, S., Dinesh, K., Jacob, J. A., & Abraham, S. (2025, March). OrgoFarm: Harnessing Artificial Intelligence and Machine Learning to Revolutionize Organic Farming and Direct-to-Consumer Marketing. In *2025 5th International Conference on Expert Clouds and Applications (ICOECA)* (pp. 643-648). IEEE.

Good Agricultural Practices (GAP): An Approach to Sustainable Farming

Udham Singh

Department of Vegetable Science,
Banda University of Agriculture and Technology, Banda, Uttar Pradesh

Introduction

Good Agricultural Practices are a collection of principles and guidelines applied to on-farm production and post-production processes. They are designed to ensure that food and non-food agricultural products are safe, healthy, and produced in a manner that is economically viable, socially responsible, and environmentally sustainable. The core of GAP lies in a proactive approach to risk management. Rather than reacting to problems after they occur, GAP helps farmers identify and mitigate potential hazards throughout the entire production cycle, ensuring that every step, from soil preparation to harvest and storage, adheres to the highest standards.

The journey of food from the field to the table involves a complex chain of producers, processors, wholesalers, retailers, and consumers through contamination can occur at any point. This is where GAP becomes a critical framework, providing a structured system to manage and minimize risks. It is a proactive and preventive approach, ensuring that our food is not only abundant but also safe.

Principles and Importance of GAP

The framework of Good Agricultural Practices is built on a foundation of key pillars, each designed to address a specific aspect of modern farming. These pillars ensure that farming is not only productive but also responsible.

Soil and Water Management: A healthy farm begins with healthy soil and clean water. GAP emphasizes sustainable soil management practices that maintain fertility and prevent erosion. This includes techniques like crop rotation, conservation

tillage, and the use of cover crops. In addition, GAP mandates responsible water management to conserve this vital resource and prevent contamination. Farmers are encouraged to test water sources regularly to ensure they are free from harmful microorganisms and chemicals before being used for irrigation or crop washing.

Integrated Pest Management (IPM): The reliance on chemical pesticides is a major concern for both human health and the environment. GAP promotes Integrated Pest Management (IPM), a strategy that focuses on long-term prevention of pests through a combination of techniques. IPM uses a approach, which involves biological controls (using natural predators), mechanical methods (like traps or barriers), and cultural practices (such as resistant crop varieties). Pesticides are used only as a last resort and in a minimal, targeted manner. This significantly reduces the application of harmful chemicals, leading to safer produce and a healthier ecosystem.

Worker Welfare and Health: GAP is not just about the crops; it is also about the people who grow them. The practices include guidelines for ensuring the health, safety, and welfare of farm workers. This

involves providing proper training on handling farm equipment and chemicals, ensuring access to clean water and sanitation facilities, and establishing fair working conditions. Protecting the well-being of farm labor is considered a moral and ethical obligation and a fundamental component of sustainable production.

Food Safety and Hygiene: This is perhaps the most visible aspect of GAP to the consumer. It encompasses a range of practices designed to prevent contamination from harvest to packaging. This includes ensuring that harvesting tools and containers are clean, that produce is handled hygienically, and that proper cold chain management is in place to prevent the growth of bacteria. Farmers must also maintain meticulous records, enabling traceability of products back to the field.

Environmental Stewardship: Beyond soil and water, GAP's environmental focus extends to the preservation of biodiversity and the reduction of a farm's carbon footprint. This includes creating buffer zones around fields to protect waterways, managing agricultural waste responsibly, and using energy-efficient practices. By protecting the natural resources on and around the farm, GAP ensures the long-term viability of the agricultural ecosystem.

Implementation of GAP The successful implementation of GAP requires a concerted effort. Farmers must first be educated on the principles and practices and then provided with the necessary resources and technical support to adopt them. This is particularly challenging in developing regions where access to technology and capital is limited. Certification programs, such as those from the Global G.A.P. organization, provide a structured framework for farmers to follow and offer third-party verification, which builds consumer trust and enhances market access.

For instance, studies in countries like Turkey have shown that GAP-certified farms use significantly fewer chemical fertilizers and pesticides compared to

conventional farms. The average application of chemical fertilizers was 31% less, while the use of insecticides, fungicides, and herbicides was lower by 50%, 25%, and 70%, respectively. This data underscores the tangible benefits of adopting these practices [1].

Impact on Our Surroundings

The adoption of Good Agricultural Practices has a profound and far-reaching impact on our environment, economy, and society.

Environmental Impact:

- **Reduced Chemical Pollution:** Minimizing the use of synthetic fertilizers and pesticides, GAP dramatically reduces chemical runoff into rivers, lakes, and groundwater. This protects aquatic ecosystems, preserves biodiversity, and ensures cleaner drinking water sources for communities.
- **Soil Health and Fertility:** Sustainable soil management practices under GAP help to combat erosion, improve soil structure, and increase organic matter content. This not only enhances crop productivity but also increases the soil's capacity to sequester carbon, playing a role in climate change mitigation.
- **Water Conservation:** GAP's focus on efficient irrigation techniques and water-saving technologies helps to conserve water resources, a critical issue in many parts of the world. It also ensures that water sources are not contaminated by agricultural runoff.
- **Preservation of Biodiversity:** By reducing chemical use and protecting natural habitats like hedgerows and field margins, GAP creates a more hospitable environment for pollinators, beneficial insects, and other wildlife. This is essential for maintaining a healthy and balanced ecosystem.

Economic Impact:

- **Improved Market Access:** GAP certification provides a competitive advantage for farmers, as many retailers and international markets prefer or even require products that meet these standards. This can lead to better prices and long-term business partnerships.
- **Increased Efficiency and Reduced Costs:** While there might be an initial investment, GAP practices often lead to greater long-term economic viability. Reduced reliance on expensive chemical inputs, better yields from healthier soil, and a lower risk of crop loss due to disease can improve a farm's profitability.
- **Brand Reputation and Consumer Trust:** In an age of information, consumers are increasingly concerned about the origin and safety of their food. Products with GAP certification give consumers confidence that the food has been produced responsibly, which can enhance a brand's reputation and loyalty.

Social Impact:

- **Enhanced Food Safety:** The most direct social impact of GAP is the production of safer food. By minimizing chemical residues and microbiological contamination, GAP plays a vital role in preventing food-borne illnesses and protecting public health.
- **Improved Worker Conditions:** The emphasis on worker welfare in GAP guidelines ensures a safer and healthier working environment for farm laborers. This includes better access to personal protective equipment, training, and sanitation facilities.

- **Community Engagement:** GAP often encourages a more transparent relationship between farmers and their local communities. When consumers know that their food is being produced responsibly and sustainably, it builds trust and supports a more resilient local food system.

Conclusion: The Future of Vegetable Production through GAP

Good Agricultural Practices are no longer just an optional set of guidelines; they are an essential strategy for a sustainable and resilient future. By adopting GAP, farmers are not only ensuring food safety and environmental protection but also securing their own long-term profitability and market relevance. As consumer demand for safe, healthy, and responsibly grown produce continues to grow, GAP-certified vegetable farming will become the industry standard.

GAP is more than a standard; it is a transformative approach to agriculture that empowers farmers to be stewards of the land while meeting the global demand for food. It provides a blueprint for a future where agricultural production can coexist harmoniously with environmental sustainability and public health. In a world facing climate change and increasing resource scarcity, GAP offers a clear path forward, paving the way for a better livelihood for farmers and a healthier planet for everyone.

Affordable Precision Agriculture Solutions (E-Crops) for Small Farmers

Rita Fredericks

CEO, Precision Grow (A Unit of Tech Visit IT Pvt Ltd)

Low-cost precision agriculture (PA) technologies, such as E-Crops, are revolutionizing smallholder agriculture by incorporating low-cost sensors, mobile-based applications, and community-based digital tools. Such technologies facilitate site-specific nutrient management, water efficiency, monitoring of pests and diseases, and mechanization, lowering input expenditure and raising productivity and quality of crops. Digital advisory services and connecting with government schemes improve access and market linkages. In spite of constraints like low digital literacy and internet penetration, capacity development, subsidies, and cooperative schemes enable uptake. Through data-informed, climate-resilient, and sustainable farming, low-cost PA empowers small-scale farmers, ensuring sustainable growth and sustained agricultural productivity.

2. Introduction

Precision Agriculture (PA) has become a revolutionary methodology in contemporary agriculture, providing site-specific crop management to increase productivity, efficiency of resources, and sustainability. By incorporating data-based tools, PA makes for prudent use of water, fertilizers, and pesticides, thus mitigating soil degeneration problems and climate-related uncertainties. But small and marginal farmers, who form the majority in developing nations such as India, face major hurdles in embracing sophisticated PA technologies. High input prices, absence of technical expertise, variability in the climate, and limited access to modern machinery are frequently the factors that limit their capacity to gain from these innovations.

To fill this gap, there is an increasing demand for cost-effective, scalable, and locally relevant precision solutions designed for smallholder conditions. The idea of E-Crops holds a great prospect by fostering digitally empowered crop production systems. With inexpensive sensors, mobile apps, and community-based tools, E-Crops equip farmers with real-time information for decision-making. This strategy democratizes precision agriculture, which becomes inclusive and affordable, ensuring equitable access to sustainable farming innovation.

3. Principles of Precision Agriculture for Small Farmers

The basis of precision agriculture is the principle of using the correct input at the correct time, in the correct location, and in the correct amount, commonly known as 4R management. The principle is such that fertilizers, seeds, water, and pesticides are not wasted but utilized to the maximum to attain increased productivity at reduced costs.

For marginal and small farmers, efficient use of resources becomes particularly important. Precision methods help for specific irrigation to save water, optimal seed distribution for high germination, and accurate application of fertilizers and pesticides to reduce input costs while keeping the environment clean.

Another central tenet is decision-making through data. Soil test kits, mobile-based weather forecasting applications, and crop monitoring tools enable farmers to make sound decisions, minimizing the reliance on guesswork.

If farmers embrace these tenets, they can reduce risks related to climate variability, market shocks, and infestations while improving long-term sustainability, soil fertility, and profitability in agricultural systems.

4. Accessible Precision Tools and Technologies

a) Soil and Nutrient Management

Good soil and nutrient management is necessary for enhancing crop productivity and sustainability. Low-cost soil testing kits and mobile soil laboratories give small farmers cheap means of evaluating soil health. Smartphone-based soil fertility maps assist in the identification of areas of nutrient-deficient zones for specific application. Biofertilizer and micro-nutrient advisory services through SMS or mobile apps also allow farmers to adopt balanced fertilization regimes, minimizing cost while sustaining soil fertility.

b) Irrigation and Water Management

Water is among the most important inputs in agriculture, and its optimal management is vital for small-scale farmers. Hand tools such as tensiometers and inexpensive soil moisture sensors allow farmers to observe field conditions and use water only when necessary. Mobile-controlled, solar-powered drip irrigation systems minimize the energy cost and allow for precise water delivery. Combinational rainwater harvesting with micro-irrigation maximizes water-use efficiency and encourages climate-resilient and sustainable farming.

Source: <https://cacm.acm.org/latin-america-regional-special-section/scalable-technological-architecture-empowers-small-scale-smart-farming-solutions>

c) Crop Monitoring

Affordable digital tools are making crop monitoring accessible to small farmers. Smartphone applications

with image recognition enable quick diagnosis of pests and diseases for timely action. Community-shared drone services offer cost-effective crop scouting and spraying on a pay-per-use basis, reducing individual investment. Farmers can also access open-source satellite data like Sentinel and Bhuvan to generate vegetation indices, helping track crop health, stress, and growth trends for better decision-making.

d) Farm Mechanization and Robotics

Low-cost mechanization solutions are important to minimize drudgery and maximize efficiency for small farmers. Implements such as mini power weeder and small-scale planters with GPS marking allow for accurate planting and weeding at low cost. Sprayers based on sensors optimize the use of pesticides by spraying only the targeted areas, reducing wastage of chemicals and minimizing environmental degradation. These technology advancements bring modern mechanization within reach, promoting cost-effective and sustainable farming practices for smallholders.

e) Digital Advisory Platforms

Digital platforms are changing the game for access to information for marginal farmers. WhatsApp and Telegram groups facilitate real-time sharing of advisory services, weather forecasts, and market information. E-Crop cards integrated with government programs enable farmers to obtain subsidies, credit, and technical advice with ease. Further, AI-driven mobile apps give farmers customized crop suggestions depending on soil, weather, and crop information, enabling farmers to take better, data-driven decisions for better productivity and profitability.

5. E-Crops: Digital Integration for Small Farmers

E-Crops is a revolutionary method of digitally empowered, sensor-backed, and cloud-linked farming, aimed at bringing precision farming within the reach of small and marginal farmers. It works on

a basic cycle: data gathering → analysis → advisory → implementation, enabling the farmer to take informed and timely decisions. For instance, a farmer can measure the soil pH with an affordable sensor, send the reading to a mobile application, and get immediate customized fertilizer advice. E-Crops also link up with government programs such as PM-Kisan, e-NAM, and Kisan Call Centers, allowing farmers to receive subsidies, market connections, and advisory services. This enhances productivity, minimizes input costs, and encourages sustainable, data-based farming practices.

6. Economic Advantages of Inexpensive Precision Agriculture

Cost-effective precision agriculture (PA) solutions yield considerable economic benefits for marginal and small farmers. By allowing for optimal application of inputs like water, fertilizers, and pesticides, these technologies minimize wastage and optimize overall input costs. Targeted nutrient management, smart irrigation, and sensor-based pest control ensure efficient use of resources, resulting in quantifiable savings. For instance, low-cost soil sensors and mobile advisory services enable farmers to use fertilizers only in specific areas, saving money without losing soil quality.

Precision agriculture also results in increased crop productivity and quality. By monitoring soil conditions, plant health, and moisture levels closely, farmers can make interventions at the right time that boost productivity. Case studies of villages using community-shared drones and ICT tools indicate significant advantages, such as enhanced crop scouting, targeted spraying, and enhanced decision-making. Research proves that the adoption of cost-effective PA can generate 20–30% water savings and 15–25% greater yields in wheat and rice.

In addition, digital platforms offer farmers greater access to markets, allowing better price discovery and fewer losses post-harvest. In general, embedding low-cost precision agriculture solutions enhances

farm profitability, facilitates sustainable practices, and enhances the ability of smallholders to compete within advanced agricultural systems.

7. Challenges and Solutions

Although affordable precision agriculture is associated with huge potential, a number of challenges circumscribe its adoption at scale among small and marginal farmers. Lack of knowledge and digital literacy hinders most farmers from knowing how to and using new technologies. Even low-cost technology requires a high upfront investment, and this may be a barrier for resource-poor farmers. Poor internet connectivity in rural areas also limits access to online advisory platforms, mobile apps, and cloud-based solutions. Resistance also comes from traditional practices and suspicion and acts as a dampener towards accepting new technologies and moving towards modern, data-driven agriculture.

In response to these challenges, capacity-building programs through Farmer Producer Organizations (FPOs) can equip farmers with the skills of using cost-effective precision tools and digital platforms. Government grants and subsidies for ICT-enabled devices can reduce the cost barrier. New business models like pay-per-use services and cooperative pooling of drones, sensors, and smart irrigation systems allow shared access without significant personal investment. Promoting local production of inexpensive sensors and devices can lower costs further, along with generating regional jobs. Through training, funding, and community-based approaches, smallholder farmers can implement precision agriculture gradually, enhancing productivity, sustainability, and economic resilience in rural agricultural systems.

8. Policy and Institutional Support

Strong policy and institutional support are vital for making affordable precision agriculture scale. Krishi Vigyan Kendras (KVKs) have an important role to play in educating small farmers on digital

technologies, sensors, and data-based crop management. Public-private partnership arrangements can deliver precision agriculture services, shared equipment, and advisory platforms at lower costs. Startup support with low-cost agritech innovations encourage locally relevant solutions for smallholders. Further, extension services delivered digitally in local languages facilitate greater accessibility and comprehension, so that farmers in all regions can avail themselves of advances in technologies. Such combined support enhances adoption, productivity, and sustainable agricultural development.

9. Future Prospects

The future of cheap precision agriculture is in sophisticated digital technologies designed for small farmers. Artificial intelligence and machine learning-driven crop models can give anticipatory recommendations on yield, pest attacks, and resource requirements. Blockchain technology provides traceability, quality control, and increased market access for farm commodities. Village-level data sharing via community cloud platforms promotes participatory decision-making and efficient use of resources. The convergence of these technologies will make way for Climate-Smart Precision Agriculture, improving climate variability resilience, lowering environmental footprints, and empowering smallholders with data-informed, sustainable, and economically sustainable agriculture solutions.

10. Conclusion

Precision agriculture is now accessible to small-scale farms; low-cost solutions enable smallholders to maximize resources and enhance productivity. With E-Crops, farmers can lower input costs, increase

yields, and reduce the environmental footprint by using data-based decisions. The future of agriculture is in digital inclusivity, community-based innovations, and low-cost technologies, with the aim that small and marginal farmers will share equally in the gains of modern, sustainable, and climate-resilient farming systems.

11. References

Casado-García, A., Heras, J., Milella, A., & Marani, R. (2022). Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture. *Precision Agriculture*, 23(6), 2001-2026.

Helfenstein, J., Diogo, V., Bürgi, M., Verburg, P. H., Schüpbach, B., Szerenesits, E., ... & Herzog, F. (2022). An approach for comparing agricultural development to societal visions. *Agronomy for sustainable development*, 42(1), 5.

Milella, A., & Reina, G. (2024). Consumer-grade imaging system for NDVI measurement at plant scale by a farmer robot. *Measurement*, 234, 114817.

Pestisha, A., Bai, A., Sertolli, A., Bytyqi, N., & Balogh, P. (2025). Farmers' Willingness to Achieve Energy Self-Sufficiency in Kosovo. *Energies*, 18(6), 1332.

Vulpi, F., Marani, R., Petitti, A., Reina, G., & Milella, A. (2022). An RGB-D multi-view perspective for autonomous agricultural robots. *Computers and Electronics in Agriculture*, 202, 107419.

Climate-Smart Farming Practices for Smallholders

¹Dr Kuldeep Singh*, ²Ashwani, ³Raghuveer Singh Nain, ⁴Rishika

¹SMS (Extension Education), Krishi Vigyan Kendra Hanumangarh -I, G.V. Sangaria, Rajasthan

²SRF -NICRA, Krishi Vigyan Kendra Hanumangarh -I, G.V. Sangaria, Rajasthan

³Program assistant, Krishi Vigyan Kendra Hanumangarh -I, G.V. Sangaria, Rajasthan

⁴Lovely professional university B.Sc. Hons (Agriculture)

Climate change poses serious challenges to agriculture, disproportionately affecting smallholder farmers who depend on natural resources for their livelihoods. Rising temperatures, erratic rainfall, soil degradation, and increased pest and disease pressures threaten productivity and food security. Climate-Smart Agriculture (CSA) offers an integrated approach to address these challenges by combining sustainable farming practices, technological innovations, and resource-efficient management. CSA is guided by three key principles: sustainably increasing productivity and incomes, enhancing adaptation and resilience, and reducing greenhouse gas emissions. Key climate-smart practices for smallholders include conservation agriculture, integrated nutrient management, efficient water use, agroforestry, diversified cropping, stress-tolerant varieties, livestock integration, renewable energy adoption, integrated pest management, and the use of digital and ICT tools. Adoption of CSA practices improves resilience to climate variability, enhances soil fertility, ensures household food and nutrition security, reduces production risks, and contributes to ecosystem health. However, adoption is constrained by limited access to finance and inputs, lack of technical knowledge, weak policy support, and high initial costs. With supportive policies, capacity building, and active farmer participation, CSA can transform smallholder agriculture into a resilient, sustainable, and climate-friendly system, contributing to global food and nutrition security, environmental sustainability, and climate change mitigation.

Introduction

Climate change is one of the greatest problems of the 21st century, and agriculture is both a cause and an effect of its effects. Small-scale farmers, who rely immediately on natural resources like soil, water, and biodiversity, are especially exposed to its consequences. Rising temperature, changing weather patterns, droughts, irregular rainfall, increasing average temperature, loss of soil, and infestation by new pests and diseases are already declining agricultural productivity and posing threats to global food security.

In response to these issues, Climate-Smart Agriculture (CSA) is now a comprehensive approach that merges sustainable agriculture practices, technological innovation, and resource-efficient management. Through CSA, it is hoped that farmers' adaptive capacity will be enhanced and greenhouse gas emissions reduced to make agriculture more

sustainable and resilient in the context of climate change.

Principles of Climate-Smart Agriculture

The practice of CSA is founded on three interconnected and overarching goals:

Sustainably Increasing Productivity and Incomes

CSA encourages farming practices that maximize yields and farm profitability without depleting natural resources. Through enhanced efficiency in input use, planting improved crop varieties, and integrating new technologies, CSA guarantees long-term food and nutritional security.

Strengthening Adaptation and Resilience

Developing resilience to climate shocks and variability is at the core of CSA. This involves embracing practices like conservation agriculture, crop diversification, agroforestry, effective water

management, and the use of climate-resilient varieties of seeds. These practices enable farmers to endure heat stress, floods, droughts, and new pests and diseases.

Reducing Greenhouse Gas Emissions

Agriculture is a major contributor to greenhouse gas emissions by way of methane from livestock, nitrous oxide from fertilizers, and carbon dioxide from deforestation and land use. CSA focuses on practices including better manure management, reduced tillage, effective fertilizer application, agroforestry, and renewable energy use to reduce emissions and improve carbon sequestration.

Climate-Smart Farming Practices for Smallholders

Smallholder farmers are the backbone of global food systems but most vulnerable to climate shocks. Climate-smart farming practices offer sensible and flexible measures that enhance resilience, maintain productivity, and minimize environmental footprints. Some of the most important practices are:

Conservation Agriculture

Adoption of minimum or zero tillage, crop residue retention, and crop rotation in a system are fundamental elements of conservation agriculture. The practices enhance soil structure, increase organic matter, lower erosion, and ensure improved water infiltration and retention, hence protecting long-term soil fertility.

Integrated Nutrient Management (INM)

A diversified approach integrating organic manures, farmyard compost, biofertilizers, and sparing use of chemical fertilizers maintains soil fertility without undue dependence on external inputs. INM strengthens nutrient cycling, soil microbial activity, and minimizes environmental degradation due to excessive fertilizer application.

Effective Water Management

In light of expanding water scarcity as a result of climate change, effective irrigation techniques like drip irrigation, sprinklers, and micro-irrigation systems take center stage. Supported by rainwater harvesting, farm ponds, and water recycling, such strategies maximize water usage and enable farmers to survive droughts and unpredictable rains.

Agroforestry Systems

Integrating crops and livestock with trees diversifies production, enhances soil quality by adding organic matter, and gives ecosystem services like shade, wind, and carbon sequestration. Agroforestry adds other sources of income from timber, fruits, forage, and non-wood forest products.

Diversified Cropping and Intercropping

Growing several crops within the same farm reduces risks of complete crop loss due to climatic extremes. Intercropping legumes with cereals also improves soil nitrogen, and diversifying crops increases dietary diversity and improves food and income security at the household level.

Stress-Tolerant Crop Varieties

Use of drought-tolerant, flood-tolerant, heat-tolerant, and pest-tolerant crop varieties provides yield stability under stresses of climatic conditions. Climate-resilient seeds are being developed by research institutions that enable smallholders to deal with unpredictable weather and biotic pressure.

Livestock Integration

Integrated crop-livestock systems recycle nutrients, use crop residues as animal feed, and contribute manure to enhance soil fertility. Livestock provides complementary income from milk, meat, eggs, and draft power, increasing household resilience against income shocks.

Use of Renewable Energy

The shift to renewable energy forms like solar-powered pumps, small wind turbines, and biogas units lowers fossil fuel dependence, decreases costs of production, and eliminates greenhouse gas emissions. The technologies also enhance energy access in rural regions.

Integrated Pest Management (IPM)

It is done through combining biological control, resistant varieties, cultural practices, and environmentally friendly pesticides to reduce chemical pesticide application while ensuring ecological balance. IPM saves costs of production and supports beneficial organisms that are crucial for sustainable agriculture.

Digital and ICT Tools

Mobile applications, SMS advisories, weather forecasts, and market information platforms allow farmers to make timely sowing, irrigation, pest management, and selling decisions. ICT tools increase the accessibility to knowledge, lower risks, and link farmers to large markets.

Benefits of Climate-Smart Practices

Enhanced Resilience to Climate Variability

CSA practices enable smallholders to better withstand the impacts of extreme weather conditions like droughts, floods, heatwaves, and unpredictable rainfall, minimizing crop losses and maintaining farm productivity.

Better Soil Fertility and Long-Term Productivity

Methods such as conservation agriculture, integrated nutrient management, and agroforestry preserve soil health, maintaining long-term yields over years.

Enhanced Household Food and Nutrition Security

Diversified cropping, intercropping, and incorporating stress-tolerant varieties ensure regular

access to healthy foods, enhancing dietary quality and food availability for farming families.

Lower Production Risks and Market Vulnerability

By diversifying crops, incorporating livestock, and employing climate-resilient technologies, farmers minimize risks related to market volatilities and crop losses, securing farm incomes.

Lower Greenhouse Gas Emissions and Better Ecosystem Health

Embracing renewable energy, efficient use of fertilizer, minimum tillage, and sustainable pest control reduces greenhouse gas emissions, maintains biodiversity, and increases ecosystem services.

Adoption Challenges

Limited Finance and Input Access

Most smallholders lack access to credit, quality seeds, organic fertilizers, or climate-smart technology, constraining them from adopting CSA practices.

Lack of Awareness and Technical Skills

Inadequate training on climate-smart methods, irrigation systems, and digital advisory services hinders effective adoption.

Inadequate Policy Support and Weakened Extension Services

Weak institutional frameworks and few government incentives curtail outreach and adoption of CSA innovations.

High Upfront Costs

Investments in irrigation infrastructure, renewable energy equipment, better seeds, and machinery can be too high for smallholder farmers in the absence of support.

Conclusion

Climate-smart agriculture provides smallholder farmers with a realistic route towards securing livelihoods in the context of rising climate variability. Through the integration of sustainable soil, water, crop, and energy management systems, CSA promotes productivity, saves natural resources, and lowers environmental footprints. With supportive policies, effective extension services, availability of

finance, and farmer active participation, CSA has the potential to turn smallholder agriculture into a resilient, sustainable, and climate-friendly system. This strategy not only protects the welfare of farmers but also plays a critical role in attaining global food and nutrition security, environmental sustainability, and climate change mitigation.

Call for Articles

October 2025 Edition of Agriculture Bulletin

*Agriculture Bulletin, a monthly publication on agriculture trends, is now accepting submissions for its October 2025 edition. We invite **popular articles, case studies, opinion, reviews, and latest innovation updates** from researchers, professionals, and enthusiasts in the field.*

Important Dates

 Manuscript Submission Deadline: 25 October 2025

 Publication Date: 31 October 2025

Submission Details

- Submit your article according to our guidelines by visiting:
www.agriculturebulletin.in

